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A b s t r a c t 

ESSAYS ON INFORMATION AGGREGATION, HERDING, AND 

VOLATILITY IN FINANCIAL MARKETS 

by 

Vladyslav Yuriyvich Sushko 

Many violations of the efficient market hypothesis, such as bubbles, crashes, 

and "fat tails" in the distribution of returns, are difficult to address using a represen­

tative agent framework because in such a setting the departures from equilibrium 

occur only through some external perturbation. An alternative approach, some­

times referred to as the "complex systems" view, emphasizes the importance of 

interactions between agents. Even if each individual agent's optimization problem 

is known, outcomes of their interactions are probabilistic, implying that markets can 

evolve "spontaneously" towards an unstable state. Particularly, in a situation where 

traders may have private information related to the payoff of a financial assets their 

individual actions may trigger a cascade of similar actions by other traders. While 

the mechanism of a chain reaction through information revelation can potentially 

explain a number of stylized facts in finance, such behavior remains notoriously diffi­

cult to identify empirically. This is partly because many theoretical underpinnings of 

herding, such as informational asymmetry, are unobservable and partly because the 

complex agent-based models of herding do not yield closed-form solutions to be used 

for direct econometric tests. In addition, such models have been criticized for their 

lack of economic microfoundations. The following chapters represent a step towards 
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filling both of these gaps. First. I identify evidence of herding behavior by institu­

tional investment managers during the collapse of the recent real estate bubble using 

an established empirical approach. Then, agent based "stochastic herding" model is 

introduced and tested with an alternative technique of "detection by distribution". 

Subsequently this framework is extended to better understand the mechanisms driv­

ing extreme volatility in the dollar-yen foreign exchange market to show that traders' 

tendency to herd around information about the possibility of high yield currency 

crashes can result in self-fulfilling prophecy without a major exogenous shock. The 

parameter measuring the "thickness" of the tail of the probability distribution of 

jumps in foreign exchange rates is proportional to the herding intensity by currency 

speculators. I employ Bayesian econometrics to test the theoretically predicted re­

lationships between this "tail risk" parameter and a number of economic variables 

related to carry trade activity. The final chapter focuses explicitly on the types of 

macroeconomic information that traders use to price such extreme events in foreign 

exchange markets. Since "stochastic herding" provides a plausible data generating 

mechanism for "rare event," the empirical units of observation utilized in this work 

have been carefully selected to match this description. Thus, in looking at domes­

tic stock market we focus on institutional investment managers that liquidate their 

entire positions, not the incremental adjustments, while the examination of foreign 

exchange markets abstracts from Gaussian volatility and focuses on rare realized 

volatility jumps and deep out-of-money options used to price such events. 
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Chapter 1 

Introduction and Overview 

The first section of this chapter outlines main findings and contribution 

of the dissertation. The second section overviews related empirical and theoretical 

literature on herding behavior, drawing a contrast between herding due to informa­

tional cascades and the stochastic herding mechanism employed in this paper. 

1.1 Main Findings 

In the first chapter, I use a unique dataset on long positions of institutional investors 

in New York Stock Exchange to test an implication of asset bubble theory that 

bubbles are associated with high degree of investor herding. I focus on herding 

behavior resulting from informational cascades, whereby investors trade based upon 

observing the decisions of others while ignoring their own private information. I 

track institutional positions in 121 real estate investment trusts. The PE ratios for 

these investment vehicles grossly exceeded the market average from 2003 until their 

1 



www.manaraa.com

prices collapsed in 2007. Consistent with several asset bubble theories, my results 

indicate that the collapse in the share prices of REITs was preceded by high degree 

of imitative behavior. I also find that herding was higher within these securities 

relative to S&P500 stocks and relative to the pre-bubble period of 1999-2002. 

The second chapter, written jointly with Makoto Nirei, demonstrates that 

the behavior of institutional investors around the downturn of the U.S. equity mar­

kets in 2007 is consistent with stochastic herding in attempts to time the market. 

We consider a model of large number of institutional investment managers who 

simultaneously decide whether to remain invested in an assets or liquidate their 

positions. Each fund manager receives imperfect information about the market's 

ability to supply liquidity and chooses whether or not to sell the security based on 

her private information as well as the actions of others. Due to feedback effects the 

equilibrium is stochastic and the "aggregate action" is characterized by a power-law 

probability distribution with exponential truncation predicting occasional "explo­

sive" sell-out events. We examine highly disaggregated institutional ownership data 

of publicly traded stocks to find that stochastic herding explains the underlying data 

generating mechanism. Furthermore, consistent with market-timing considerations, 

the distribution parameter measuring the degree of herding rises sharply immedi­

ately prior the sell-out phase. The sell-out phase is consistent with the transition 

from subcritical to supercritical phase, whereby the system swings sharply to a new 

equilibrium. Specifically, exponential truncation vanishes as the distribution of fund 

manager actions becomes centered around the same action - all sell. 

2 
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The third chapter, written jointly with Makoto Nirei, applies the stochas­

tic herding approach to explain extreme volatility in currency markets populated 

by large numbers of carry traders. When domestic monetary policy considerations 

introduce an interest rate wedge between two countries, a trader can make a profit 

by borrowing at low interest in one country to fund the purchase of a higher yield­

ing asset in the other. That is. unless the high yield currency depreciates sharply. 

We model strategic traders trying to profit from such interest rate differential at 

the expense of exposing themselves to currency crash risk. Because all such "carry 

traders" are concerned with the same type of foreign exchange risk they seek the 

same information and extract signals from each others' actions. In this environment, 

a random termination of a carry position can trigger a herd effect causing others 

to do the same. As the traders simultaneously pile on the low interest currency 

to repay their liabilities the fears of high yield currency crash become self-fulfilling. 

Such dynamics imply that sudden appreciations (depreciations) of low (high) yield 

currencies, although rare, are not independent events. This hypothesis is corrobo­

rated by the distribution of realized volatility jumps in the Japanese yen. which has 

served as a funding currency in carry trade. Yen appreciation jumps exhibit depen­

dence and extreme variability, whereas depreciation jumps appear to be white noise. 

Consistent with our model predictions, we find that higher volume of carry trade 

positions increases the "tail risk" of sharp yen appreciation directly, while lower 

margin requirements and higher option implied risk premia only raise the likelihood 

of sharp appreciation indirectly through their effect via the actions of carry traders. 

3 
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The final chapter, written jointly with my adviser Michael Hutchison, in­

vestigates market perceptions of the risk of large exchange rate movements by using 

information gleaned from risk reversal contracts and macroeconomic news surprises. 

We focus on the height of the carry trade period in Japan (March 2004 through De­

cember 2006). Concerns about sharp yen appreciation were particularly evident 

during the period of heavy carry trade activity and are more likely to show up in 

the price of risk. We focus on "big" news surprises that are more likely to convey 

information about the risk of large changes in the exchange rate, consider a broad 

set of news, and investigate the direct impact of news on the value of dollar yen risk 

reversals. We also consider the effect of the value of risk reversals on the yen carry 

trade, using non-commercial open interest positions in futures markets as a proxy 

for carry trade activity. Overall, we find that macroeconomic news is an important 

determinant of risk reversals during periods of heavy carry trade volume. Moreover, 

there is a close link between risk reversals and non-commercial futures positions. 

We calculate a substantial effect of macroeconomic news on carry trade activity, 

with risk reversals (the cost of hedging) as the transmission mechanism. 

1.2 Stochastic Herding and Related Literature 

Related arbitrage literature includes Shleifer et al. (1990) who show that rational 

traders will tend to ride the bubble because of risk aversion. Abreu and Brun-

nermeier (2003) model a continuous time coordination game in which the market 

4 
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finally crashes when a critical mass of arbitrageurs synchronizes their trades. In such 

a setting, it is futile for well-informed rational arbitrageurs to act on some piece of 

information unless a mass of other arbitrageurs will do so also. The coordination 

element coupled with information asymmetries create an incentive for fully rational 

investors to base their actions on the actions of others, i.e. herd. Scharfstein and 

Stein (1990), Bikhchandani et al. (1992), Banerjee (1992), and Avery and Zemsky 

(1998) have formulated a theory of informational cascades, a type of herding that 

takes place when agents find it optimal to completely ignore their private informa­

tion and follow the actions of others in a sequential move game.1 Because players 

select their actions sequentially the system will eventually but unexpectedly swing 

from one stable state to another. In contrast, in our framework herding is stochas­

tic following Nirei (20066, 2008) with some foundation going back to probabilistic 

herding in the famous ant model of Kirman (1993).2 Only a fraction of agents syn­

chronize, the size of the fraction in turn depends on the realization of private signals. 

Stochastic herding emerges because strategic complementarity makes it optimal for 

some agents to place higher value on the informational content of the actions of 

others' relative to own private signals. This setup differs from pure informational 

cascades similarly to Gul and Lundholm (1995) in that in our case, as in theirs, 

none of the information goes unused. As a result of stochastic herding, transition 

1See Chari and Kehoe (2004) for the application of information cascades to financial markets. 
2Alfarano et al. (2005) and Alfarano and Lux (2007) extend the Kirman model in a different 

direction: they focus on the ability of the model with asymmetric transition probabilities of different 
types of traders to match higher moments in financial returns, whereas the stochastic herding 
approach focuses on the mapping of heterogeneous information onto the agents' action space. 

5 



www.manaraa.com

between states only happens with certain probability. 

The probability distribution of herding agents is derived from the threshold 

rule governing their actions. This is similar to the threshold-based switching strategy 

employed by Morris and Shin (1998) in the Global Games approach. However, unlike 

the Global Games, the threshold value of the signal determining whether or not an 

investment manager chooses to liquidate her position fluctuates endogenously with 

the actions of others. Endogenously fluctuating threshold can generate cascading 

behavior whereby agents continuously lower their threshold belief for liquidating 

an assets as they observe more and more liquidation around them. This leads 

to a non-trivial possibility of an "explosive" event in which the vast majority of 

investment managers liquidate simultaneously causing the liquidity to dry up. In 

this manner, we show that even if private signals about future market liquidity are 

normally distributed, the resulting aggregate action will follow a highly non-normal 

distribution implying stylized facts such as volatility clustering and fat tails in the 

distribution of financial returns.3 

Empirical studies of herding have mostly focused on abnormal changes in 

institutional portfolio composition as evidence of herding(see Nofsinger and Sias 

(1999), Kim and Nofsinger (2005), and Jeon and Moffett (2010) for the ownership 

change portfolio approach).45 Sias (2004) examines herding among institutional 
3 Our approach also bears some relationship to the studies of markets for information such as 

Veldkamp (2006a) who identifies herding as an element of intrinsic instability because it makes 
markets respond disproportionally to seemingly trivial news. 

4In related empirical studies McNichols and Trueman (1994) finds herding on earnings forecasts, 
Welch (2000) finds that security analysts herd, and Li and Yung (2004) finds evidence of institutional 
herding in the ADR market. 

5Laboratory studies of herding in speculative attacks include Brunnermeier and Morgan (2004) 

6 
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investors in NYSE and NASDAQ by using a more direct measure that looks at the 

correlation in the changes of an institution's holdings of a security with last period 

changes in holdings of other institutions. Our empirical approach is more closely 

related to Alfarano et al. (2005) and Alfarano and Lux (2007), in that we examine the 

goodness of fit of the empirical distribution to the theoretical distribution implied 

by the model instead of performing quantile or regression analysis like the earlier 

works. 

If agents are unsure about the accuracy of their private signal about future 

market liquidity and are prone to follow the actions of others within the same stock-

investor-type group, then, because of the complementarity of their market-timing 

strategies, the probability of observing large outliers is much higher compared to 

the case when investors act independently. Specifically, if the behavior of traders 

can be described by stochastic herding then the distribution of their actions will 

exhibit exponential rather than Gaussian decay. Moreover, the exponential decay 

will vanish and the distribution will approach a pure power law in the state of 

self-organized criticality when all agents herd on the same action. 

In a related work, Farhi and Gabaix (2008) describes a number of data 

generating processes with feedback effects that have been known to produce power 

law distributions. However, we depart from their approach in several ways. Gabaix 

et al. (2006) derive power-law scaling in trading activity from the power-law distri­

bution in the size of the traders, while we obtain this result from the interactions 

and Cheung and Friedman (2009). 

7 
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of same-size traders. In other words, we obtain power-law scaling without imposing 

major parametric assumptions on exogenous variables. Instead, it suffices that the 

signals about the true state are informative in the sense of satisfying the Monotone 

Likelihood Ratio Property (MLRP). For instance, as in this paper, the information 

and the true state can follow a bivariate normal distribution. One advantage of 

developing this empirical approach is its potential, given the right data, to quan­

tify the "hidden tail risk" and provide advance warning of an impeding instability 

by identifying a system with high degree of choice interdependence based on the 

distribution of aggregate action. 

8 
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Chapter 2 

Bubbles and Herding: 

Evidence from the NYSE Real Estate 

Stocks 

2.1 Introduction 

The collapse in the prices of real estate backed securities in August 2007 provides 

ample material for testing asset pricing theories. Modern literature on speculative 

bubbles and crushes dates back to Blanchard (1979) and Blanchard and Watson 

(1983). Cooperative behavior of investors is a common feature of models describing 

persistent overpricing of an asset relative to its fundamental value (a bubble) or 

a sudden collapse of such overpricing (a crash). For instance Abreu and Brunner-

meier (2002) challenge the efficient market hypothesis on the basis that fully rational 

9 
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traders can trade based on investor sentiment alone while ignoring the underlying 

fundamentals of a financial asset. They call this synchronization risk and offer it as 

a possible explanation why mispricing can persist despite the presence of rational 

arbitrageurs in the market. Thus, instead of correcting the mispricing right away, 

rational traders will attempt to time the market by acting on the basis of the senti­

ment of other investors. This introduces an element of coordination among investors 

thus creating a third motive for entering a position in a financial asset: in addition 

to noise trading and fundamental trading, the incentive to time the market leads to 

synchronized trading, Abreu and Brunnermeier (2003). 

For illustrative purposes consider the following price dynamics of a bubble 

asset from Zhou and Sornette (2008): 

— = udt + adW - Kdj (2.1) 
dt 

Equation (2.1) is the standard Brownian motion plus a discrete jump, K, 

that corresponds to the bursting of a bubble, dj is an indicator function with a value 

of either 0 or 1. As a key element that determines the time (if at all) of the bursting of 

the bubble Abreu and Brunnermeier (2003) emphasize coordination while Zhou and 

Sornette (2008) calls it local self-reinforcing imitation between traders. According 

to Sornette self-reinforcing imitation first leads to the blossoming of a bubble, but 

then through progressive strengthening may cause a crash as it increases the crash 

hazard rate. Where in Zhou and Sornette (2008) the crash hazard rate is given by: 
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Et[dj] = h(t)dt (2.2) 

Thus crash hazard rate is the probability of a discrete jump (a crash) in 

the price process in equation (2.1) conditional on the fact the the crash has not yet 

occurred. In order to predict the timing of the crash based on crash hazard rate 

Zhou and Sornette (2008) infers a particular signature of investor herding from price 

movements, but does not measure herding, i.e. track imitation, directly. 

I attempt to measure the degree of herding directly. Such work is scant 

because data on actual holdings of securities is rare and or proprietary. One reliable 

source of investor holdings data is Securities and Exchange Commission (SEC). Insti­

tutional investor are required by law to file quarterly reports of their long positions 

in publicly traded securities in the so-called 13F filings. Knowing how investors' 

positions change in time and relative to each other it is possible to construct a 

sensible measure of investor herding. I adopt Sias (2004) approach for measuring 

herding behavior among institutional investors to determine whether a bubble asset 

is characterized by excess institutional herding and whether the degree of herding 

increases in time as the crash approaches. I focus on a sample of 121 shares real 

estate investment trusts (REITs). These are closed end funds that specialize in real 

estate investments traded on New York Stock Exchange (NYSE). As a class, these 

shares experienced a dramatic rise in PE ratios relative to the market (proxied here 

by S&P500) beginning around 2003Q1 then crashed dramatically in August 2007. 

11 
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2.2 Data 

My main data sources are 13F Filings (SEC) that track institutional investors in US 

stock holdings, including 121 real-estate stocks. These were obtained from Thom­

son Financial Ownership Database. I obtained data on prices, price-earning ratios, 

earnings per share, dividend yields, and assets per share from Datastream (again 

Thomson Financial) for the period 1999Q1 through 2008Q1. Related work using 

13F filing is scant, partly due to the limitations of the series. For example the 13F 

database tracks only long positions. (Brunnermeier and Nagel (2004).Sias (2004). 

Sias (2007). Hardouvelis 8z Stamatiou(2008)). I have information on the following in­

vestors with holdings of real estate stock: Hedge Funds. Bank Trusts, Corporations, 

Endowment Funds. Insurance Companies, Pension Funds. Investment Advisors. In­

dividual Investors. Research Firms, and Venture Capitalists. 

Figure 3.4 [about here] 

Figure 3.4 shows PE ratios of the 121 Real Estate Stocks (REITS) and the 

S&P500 Index (TOTMK). It suggests that REITS stocks were overvalued for the 

period 2003 to 2007 as their PE ratio more than doubled during that period relative 

to the market.1 

Table 2.1 [about here] 

1Tables 2 10, 2 11 and 2 12 list the tickers and fund names corresponding to the 121 real estate 
stocks under scrutiny. 
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Table 2.1 lists descriptive statistics for institutional investor types and 

stocks in my sample. The tabulations are in 8 quarter intervals from March 2000 

through March 2008. Panel A shows that investment advisors occupy the highest 

share of investors in my sample. On average 63 percent of all investors are investment 

advisors. Hedge funds constitute the second highest share of investors with 15 

percent of all observations on average. The proportion of different investors by type 

stays relative constant over the same period. The market cap of each investor type in 

real estate stocks is roughly proportional the numbers of investors in each category. 

One exception are the insurance companies, whose holdings of real estate stock are 

lower than pension funds for the entire period, despite their higher number. Panel 

C reports the number of real estate securities with at least one, 20, 50, and 100 

institutional investors. There is also a notable increase in the number of securities 

with more than 50 institutional investors. In March 2000 approximately 30 percent 

of real estate securities had more than 50 investors, this percentage increased to 78 

percent by March 2008. 

2.3 Herding 

Past literature categorizes herding into several non-mutually exclusive categories: 

informational cascades, reputational herding, investigative herding, and empirical 

herding. Informational cascades occur when investors ignore their own private 

information and instead trade based upon observing decisions of previous actors, 
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Bikhchandani et al. (1992). Reputational herding results from investors farcing 

reputational cost from acting different from the herd or market leader, Trueman 

(1994). Investigative herding occurs when investors' information is positively cross-

sectionally correlated because they follow the same signals, Hirshleifer et al. (1994). 

Finally, empirical herding refers to herding without a specific model or explanation. 

Sias (2004) findings are most consistent with institutional investors herding as a 

result of inferring information from each other's trades, which falls under informa­

tional cascades. 

2.3.1 Simple Model 

Following Sornette (2003) denote N(i) as the number of institutional investors 

within a network of trader i. The investors trade at price p(t — 1) at time t — 1 

based on all previous information. Let s%{t — 1) be a strategy of investor i at time 

t — 1, this strategy is either buy, sell, or hold. The investors realize capital gain 

or loss based on the realization of p(t). where the asset price variation is simply 

proportional to the aggregate sum of all traders' actions, Yl%=i s^(t ~~ !)• Since the 

price moves with the general opinion X^=i si(^ — 1)> the best strategy is to buy if 

it is positive, i.e. more buy orders than sell orders, and sell if the sum is negative, 

i.e. more sell orders than buy orders. This simple framework yields a strategy that 

maximizes investor i's expected payoff, i's position choice should be of the sign of 

the actions of all other investors: 
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st(t) = sign[K^2sj(t-l) + et\ (2.3) 

where K is the proportionality constant between market depth and the 

aggregate buy/sell orders and is inversely proportional to the market depth. The 

time lag in the RHS of (2.3) is there to reflect information cascades theory of herding, 

where information takes one time period to disseminate. Aggregating equation (2.3) 

over all institutions investing in security k should imply positive correlation between 

institutional demand for that security over consecutive quarter is in fact they follow 

imitative strategies. 

2.3.2 Empirical M e t h o d o l o g y 

I estimate the degree of herding among institutional investors in real estate secu­

rities during the bubble period following Sias (2004). He defines herding among 

institutional investors as following each other in and out of the same securities over 

time. 

Following the methodology of Sias (2004) I construct a measure of the 

fraction of institutional investors trading security k that are buyers at time t: 

„ . InsitutionsBuyinqu t ,„ ,N 
B " ^ ' = In.iUMonsB^^ln.ZLsSemn^ ( 2 ' 4 ) 

Standardizing variable BuyAkj s o that it has zero mean and unit variance, 
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the standardized raw fraction of buying institutions can be expressed as: 

BuyAk}t - BuyAt 

a[BuyAk)t) 

where BuyAt is the cross-sectional average, across all real estate stocks, of 

the fraction of institutional investors that are buyers at time t and a(BuyAk}t) is the 

cross-sectional standard deviation of raw fraction of buying institutions in quarter t. 

If institutional investors follow each other in and out of the same securities or if they 

follow their own last quarter trades, then the fraction of institutions buying in the 

current quarter will be positively correlated with the fraction of institutions buying 

in the previous quarter. This implies a positive coeffient on lagged standardized 

fraction of buyers in the following regression: 

Afc)t = pAk,t-i + efc,t (2.6) 

Thus, a positive and statistically significant estimate of p will indicate the 

presence of institutional herding in the given class of securities. In addition Sias 

(2004) shows that the slope coefficient from equation (2.6) can be written as (proof 

in the appendix): 
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(K - l)cr(BuyAz^t)a(BuyAltk,t-i) 
(2.7) 

K 

E 
fc=i 

N,._ 

E 
n = l 

(A,fc,t - Buy\tt) ( A , M - i ~ BuyAl}t-\) 

NixtNttk,t-i 

+ ( K - l)cr(BuyAhktt)cr(BuyAhktt-i)_ 

K 

E 
fc=i n = l n=l,n=^m NzbtNikt-l 

where iVfc;i is the number of institutional investors t rading stock k in quar­

ter t and A,fc,t is a dummy variable tha t equals one (zero) if t rader n is a buyer 

(seller) of security k in quarter t. Similarly. Nk,t-i is the number of institutional 

investors trading stock k in quarter t — 1, A,fe,t-i is a dummy variable tha t equals 

one(zero) if trader n is a buyer (seller) of security k in quarter t - 1 , and Dm,k,t-1 is 

a dummy variable that equals one (zero) if trader m(m ^ n) is a buyer (seller) of 

security k in quarter t — 1. 

The first term on the right hand side in equation (2.7) is the portion of the 

correlation that results from institutional investors following their own last quarter 

trades. If institutional investors in REITs follow their own last quarter t rades within 

this class of securities this term will be positive, whereas if they tend to reverse their 

last quarter transactions this term will be negative. 

The second term on the right hand side of equation (2.7) is the main focus 

of this study. It is the proportion of the correlation that results from institutional 
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investors following other institutional investors in and out of the same securities. 

This term will be positive (negative) if institutional investors in REITs tend to 

accumulate (abandon) securities that other institutional investors have purchased 

(sold) in the previous quarter. This term measures the degree imitative behavior and 

corresponds to the degree of institutional herding in REITs. The higher the second 

term on the right hand side of equation (2.7), the higher is the synchronization risk 

formulated by Abreu and Brunnermeier (2003) 

2.4 Results 

2.4.1 Abnormal Herding Preceded REITs Share Price Collapse 

Figure 2.2 shows the plot of the second term on the right hand side of (2.7), which 

corresponds to the degree of institutional herding in REITs, against the end of 

quarter average share price of the 121 real estate investment trusts in my sample. 

Herding is measured along the lest axis, where a value of .2 would indicate that 20 

percent of institutional demand for REITs shares was associated with demand for 

the same shares by other institutional investors in the previous quarter. The average 

share price of REITs is measured along the right axis. The standard deviation of 

the herding estimate is approximately .09 or 9 percent. 

Figure 2.2 [about here] 

Notice the sudden spike in herding behavior in 2006Q3, or 2 quarters before 

the rapid decline in the share prices of REITs. It is equal to .34, more than three 
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times the standard deviation. This indicates that in 2006Q3 approximately 34 

percent of institutional demand for securities issued by real estate trust funds was 

associated with the purchases of the same funds by other institutions in the previous 

quarter. Such dramatic increase in imitative behavior shortly before the collapse of 

the asset price bubble in REITs is supportive of the notion of synchronization risk , 

Abreu and Brunnermeier (2003), and of self reinforcing imitation that increases the 

crash hazard rate of a bubble assset Zhou and Sornette (2008). Of course, given the 

data limitations the evidence is not conclusive. The most important shortcoming 

being that I use quarterly data to make inferences regarding investor behavior. It 

is much more likely that portfolio reallocation decisions of this type by institutional 

investors are conducted at much higher frequencies. However, it is encouraging that 

results are supportive of the prominent theories in this field even using 13F filings, 

which only track long positions at meager quarterly frequency as mentioned before. 

Note that by construction the coefficient is negative if bullish period is followed by 

a massive sell off. This is exactly what happened at the end of 2007Q1. 

2.4.2 Regression Approach 

In addition to manually computing one of its components, I estimate the correlation 

coefficient p in equation (2.6). I sequentially include several controls to account for 

the two main motives for buying securities cited in the literature. I include lag re­

turns on each stock to control for momentum (or feedback) trading by institutional 

investors. It may be the case that institutions appear to follow each other in and 
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out of the same stocks because they are momentum traders, and lagged fraction of 

institutions buying may simply proxy for lagged returns. To account for trading 

based on fundamentals, I include growth in dividend yield, growth in earnings per 

share, and growth in assets per share. These control variables account for the the 

other two types of investors commonly cited in the literature: chartists and funda­

mentalists, Cheung and Friedman (2009). Because returns enter into the regression 

with a one period lag relative to the fundamentals, I avoid the multiculliniarity 

problems associated with correlation between stock price and the underlying firm 

fundamentals. 

Aktt = pAk,t-i + P\Rk,t-\ + Pidyk,t + fcepsk,t + fiiapshk.t + ek,t (2.8) 

Here R represents log returns and dy, eps. apsh stand for logarithm of 

the change in dividend yield, earnings per share, and assets per share respectively. 

Because of the uncertainty associated with the data generating process and several 

shortcomings of my panel data (discussed in detail below), I estimate the coefficients 

in equation (2.5) using Difference and System General Method of Moments (GMM) 

approaches developed by Arellano and Bond (1991) and Arellano and Bover (1995) 

and Bond et al. (2002) respectively. 

Efficient GMM estimates are obtained by performing Generalized Least 

Squres on (2.8) scaled by the covariance matrix of the instruments for RHS variables, 
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where, depending on the exact specification, GMM instruments for RHS variables 

using all available lags. My panel dataset exhibits several characteristics which ne­

cessitate the use of GMM to obtain unbiased coefficients. First, small number of 

time periods (41 quarters) relative to the size of the cross-section. Second, autocor­

relation in the dependent variable, A ^ , implies dynamic panel bias, which is taken 

into account by either Difference or System GMM approach. Third, because the 

cross-section consists of different stocks it is plausible that the data exhibits auto­

correlation within individuals. Finally, uncertainly regarding the data generating 

process means that independent variables may be correlated with fixed effects and 

the error term. 

The System approach uses GMM on the system of two equations: the 

original equation and one with all regressors transformed by differencing. It then 

performs a forward orthogonal transform to produce the augmented dataset by left-

multiplying the original by an augmented transformation matrix, Roodman (2006). 

This approach is appropriate for unbalanced panels, such as mine, because it pre­

serves sample size in panels with gaps. The crucial assumption of System GMM is 

that first differences of instrumental variables are uncorrelated with fixed effects. 

2.4.3 GMM Estimation Results 

Table 2.2 reports regression results on a balanced panel of 75 real-estate stocks 

during what I characterize as the bubble period based on their average PE ratio 

relative to S&P500 (Figure 2.1). The panel is balanced because I only focus on the 75 
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stocks that have persisted in the 13F filing data each quarter for the period of 1999Q1 

through 2008Q1. I do this in order to be able to compare the degree of herding in the 

control sample of real-estate stocks in the pre-bubble period of 1999 through 2002. 

Panel A reports results of Difference GMM. The coefficient, p, on Lag Fraction Buy, 

Afc t_i, is statistically significant under 99 percent confidence and is fairly stable to 

the inclusion of control variables, p ranges from 0.176 to 0.182 indicating that in the 

real estate sector stocks between 2003Q1 and 2007Q4 the cross-sectional correlation 

between institutional demand this quarter and last quarter averaged approximately 

18 percent, even after controlling for feedback and fundamental-based trading. The 

coefficient on lag returns is insignificant under all four specifications indicating that 

momentum trading was not a major factor in institutional investors' decision to take 

long positions in real estate stocks during the bubble period, at least at the quarterly 

level data. However, one of the fundamental factors, growth in earnings per share, 

is positive and significant under 95 percent level of confidence under specification 

(2.4). Overall, Difference GMM results indicate that during the bubble period 

herding played a much larger role in institutional investors' decision to take long 

positions in real-estate stocks than fundamentals or past returns. 

Table 2.2 [about here] 

2.4.4 Comparison to Pre-Bubble Period 

At 18 percent, the coefficient on lag trades is almost two times larger than that 

found by Sias (12 percent) using institutional ownership data for 1983Q1 through 
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1997Q4 for all of NYSE, NASDAQ, and American Stock Exchange stocks. This may 

indicate a higher than normal degree of herding in my sample of real estate stocks 

during the bubble period of 2003Q1 through 2007Q4. To see whether the degree 

of herding was in fact higher for the same stocks during the period of abnormally 

high PE ratios I run the Difference GMM estimation on the same sample of real 

estate stocks for the period of 1999Q1 through 2002Q4, during which the average 

PE ratio for real estate stocks approximated that of the S&P500. I report the 

results in Table 2.2. Panel A reports Difference GMM results for the period of 

2003Q1 through 2007Q4, while panel B reports Difference GMM coefficients for 

the pre-bubble period of 1999Q1 through 2002Q4. Again, the coefficient on Lag 

Fraction Buy which represents herding is stable to the inclusion of controls for 

feedback and fundamentalist trading. The first line of Panel B indicates that on 

average 13 percent of institutional demand for real estate securities correlated with 

last quarter demand during this period. This is approximately 5 percentage points 

lower than during the bubble period, but only 1 percentage point different from the 

market-wide average found by Sias. Overall, comparison to the pre-bubble control 

sample supports the finding that the degree of herding among institutional investors 

is higher for securities characterized by overpricing based on their PE ratios. 

2.4.5 Comparison to S&P500 Stocks 

The second control sample I use consists of stocks in the S&P500 Index. Table 2.3 

reports the GMM coefficients on both samples controlling for feedback trading. Note 
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that in contrast to the real estate stocks, the coefficient on lag returns for S&P500 

stocks is positive and significant under 1 percent confidence level indicating that 

momentum trading played an important role in institutional demand for securities 

representing the entire NYSE but not for real estate stocks. Finally, the coefficient on 

last quarter institutional demand, Lad Fraction Buy, at 0.176 compared to 0.161, is 

higher for real estate securities than for S&P500 stocks during the period of 2003Q1 

through 2007Q4. This means the correlation of current institutional demand with 

that of past quarter was 1.5 percent higher in real estate securities than in the 

S&P500 stocks. This provides weak support for the hypothesis that the degree of 

herding is higher within the class of securities presumed to be in a bubble. 

Table 2.3 [about here] 

2.4.6 Robus tnes s Checks 

2.4.6.1 Bounding GMM Estimate Using OLS and LSDV 

Panel B of Table 2.4 shows the results for regular OLS, and Panel C shows regression 

results with Least Squares Dummy Variables (LSDV). Theoretically, the unbiased 

coeffient on Lag Fraction Buy, A^if_i, obtained through GMM estimation should 

lie within the bounds set via OLS and LSDV regressions. If not, then GMM may 

not be the appropriate estimation method for this data. 

Table 2.4 [about here] 
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Dynamic panel bias means that the lagged dependent variable, A^^-i, is 

endogenous to the fixed effects in the error term. This implies that p, the coefficient 

on Afc^-i, obtained via OLS is correlated positively with the error term and is biased 

upward since p obtained through OLS attributes some of the predictive power to 

Afc,t-i' whereas in reality part of the predictive power belongs to the stock's fixed 

effects. One way to address fixed effects is by applying a mean-deviations transform 

to each variable, where the mean is computed at the level of the stock. Running 

OLS on the data transformed in this way yields Within Group estimator, which 

produces the same coefficients as LSDV estimator but with slightly lower standard 

errors. This procedure accounts for fixed effects, but does not eliminate dynamic 

panel bias, Roodman (2006). This implies that in contrast to the upward biased 

OLS coefficient on Lag Fraction Buy, the LSDV coefficient will be biased downward. 

The unbiased GMM estimate should thus lie within the bounds formed by OSL and 

LSDV estimates. As Panel B of Table 2.4 shows, the estimate of p obtained via OLS 

ranges from 0.297 to 0.300. Panel C shows the same estimate obtained via LSDV 

and it ranges from 0.101 to 0.103. Comparing these to p obtained via Difference 

GMM shown in Panel A it is evident that pgmm is within bounds set by OLS and 

LSDV for all four specifications, suggesting that GMM is in fact the appropriate 

estimation procedure for this dataset. 
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2.4.6.2 Fixed Effects 

Although the 121 real estate securities in the sample, 75 of which persist throughout 

the entire sample period of 1999Q1 through 2007Q4. generally fall into the same 

sector of the economy, they still represent investment vehicles that are quite diverse 

in their focus and strategies. For instance some specialize in commercial properties, 

while others focus on residential real estate. To confirm that the dataset in fact 

exhibits stock specific fixed effects, an assumption that justified the use of GMM. 

I also conduct Hausman specification test. The results for both sample periods are 

presented in Table 2.5 and are quite stark. The difference between consistent fixed 

effect coefficients and asymptotically efficient random effect coefficients is systematic 

for the time period of 1999Q1 through 2002Q4 as well as 2003Q1 through 2007Q4. 

with probability of committing type-1 error being zero. It also appears that the 

bias caused by ignoring fixed effects during the latter period is higher, with absolute 

difference in coefficients of 0.147 compared to 0.068 for 1999Q1 through 2002Q4. 

Table 2.5 [about here] 

2.4.6.3 Stationarity 

To make sure that the data is stationary the RHS variables enter the regression in 

log-differences. Thus in equation (2.7). Rkj stands for ln(Pktt) — ln(Pk,t-i)- dyk,t 

stands for ln(DYk}t) — Zn(-DYfcit_i), eps^^ represents ln(EPSk,t) — ln(EPSk,t-i), and 

apshkj represents In^APSH^^) — ln(APSHktt-i)- I run two stationarity tests for 
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panel data: Hadri (2000) stationarity test for heterogeneous panel data and Levin 

and Chu (2002) panel unit-root test.Hadri (2000) approach is a residual Lagrange 

Multiplier test for the null hypothesis that the time series of each cross section unit 

is stationary around a level or deterministic time trend against the alternative of 

at least a single unit root. The results for 2003Q1 though 2007Q4 and 1999Q1 

through 2002Q4 are reported in Tables 2.6 and 2.7 respectively. Here, Z(mu) is the 

uncorrected standardized statistic and Z(tau) is the standardized statistic corrected 

for degrees of freedom. While log returns and dividend yield growth appear sta­

tionary under either homoskedasticity or heteroskedasticity assumptions, the null 

of unit-root cannot be rejected for my variable of interest, Fraction Buy. A critical 

assumption of Hadri (2000) is that of cross sectional independence among individual 

time series in the panel. 

Tables 2.6 k. 2.7 [about here] 

I also perform a Levin and Chu (2002) panel unit-root test. The test 

assumes that each individual unit in the panel shares the same AR(1) coefficient, 

but allows for time effects, a time trend, and for individual effects. Like Hadri 

(2000), the null of Levin, Lin, and Chu (2002) test is that of nonstationarity. The 

results are reported in Tables 2.8 and 2.9. 

Tables 2.8 & 2.9 [about here] 
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2.5 Conclusion 

I applied the methodology for measuring institutional herding developed by Sias 

(2004) to the study of asset bubbles. Using a sample of 121 closed-end funds that 

specialize in real estate investments and whose shares experienced a dramatic in­

crease in price followed by a collapse in the Summer of 2007, I attempt to identify 

whether investors in these securities followed each others' trades while ignoring other 

relevant information. Because of the difficulty in obtaining data on investor posi­

tions, most studies in this area make behavioral inferences by observing prices. In 

contrast, I attempt to measure herding directly using data on institutional holdings. 

Consistent with theories posed by 
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Table 2.1: Descriptive Statistics 

Panel A: '. 

Bank and Trusts 
Hedge Funds 
Insurance Companies 
Investment Advisors 
Pension Funds 
All Others 

Panel E 

Bank and Trusts 
Hedge Funds 
Insurance Companies 
Investment Advisors 
Pension Funds 
All Others 

Mar-00 Mar-02 Mar-04 

Number of Institutional Investors 

42 
60 
23 

295 
20 
13 

70 
124 
35 

460 
29 
22 

59 
87 
26 

366 
25 
20 

>: Capitalization in Millions ($) 

1.010 
3.180 
737 

15,700 
3.220 
1.010 

2.060 
6.490 
1,920 

34.600 
7,810 
1.810 

3.950 
7.920 
2.780 

65,800 
12,000 
2.730 

Mar-06 

58 
84 
25 

337 
24 
14 

8.370 
14.400 
3.310 

112,000 
10.400 
5.680 

Mar-08 

49 
84 
22 

311 
20 
12 

7.710 
15.300 
4.150 

120.000 
8.360 
7.700 

Panel C: Number of Real Estate Securities with: 

> 1 trader 
> 20 traders 
> 50 traders 
> 100 traders 

Total Real Estate Securities 

95 
74 
39 
3 

95 

96 
84 
62 
25 

96 

102 
99 
77 
30 

102 

121 
114 
88 
32 

121 

121 
117 
94 
24 

121 

Source: Spectrum data, available through Thompson Financial Ownership 
Database. 
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Table 2.2: Herding: During and Before "The Bubble' 

Panel A 

Lag Fraction Buy 

Returns 

Growth in Divident Yield 

Growth in Earning/Share 

Growth in Assets/Share 

Number of Stocks 
Observations 

Panel B 
Lag Inaction Buy 

Lag Returns 

Divident Yield Growth 

Earning/Share Growth 

Assets/Share Growth 

Number of Stocks 
Observations 

(1) 

.: 2003Q1 -

0.178 
(0.035)*** 

0.003 
(0.036) 

75 
1425 

: 1999Q1 -
0.133 

(0.040)*** 
0.203 

(0.385) 

75 
1050 

(2) 

2007Q4 

0.182 
(0.035)*** 

-0 .007 
(0.036) 
-0 .070 
(0.113) 

74 
1406 

2002Q4 

0.135 
(0.039)*** 

0.325 
(0.406) 
0.047 

(0.044) 

74 
1036 

(3) 

0.180 
(0.042)*** 

-0 .026 
(0.036) 
-0 .035 
(0.109) 
0.459 

(0.282) 

72 
1187 

0.123 
(0.046)*** 

0.053 
(0.546) 
0.116 

(0.101) 
-0 .160 
(0.613) 

74 
958 

(4) 

0.176 
(0.042)*** 

-0 .041 
(0.041) 
-0 .033 
(0.097) 
0.660 

(0.262)** 
2.488 

(1.908) 
71 

1169 

0.126 
(0.046)*** 

-0 .040 
(0.581) 
0.117 

(0.109) 
-0 .086 
(0.625) 
0.978 

(3.016) 
73 

938 

Note: Standard errors in parentheses; **significant at 5 percent; *** significant 
at 1 percent. 

Table 2.3: Herding: Real Estate Sector vs. S&P 500, 2003Q1 - 2007Q4 

(1) 
Real Estate 

(2) 

S&P500 

Lag Fraction Buy 

Lag Returns 

Number of Stocks 
Observations 

0.176 
(0.035)*** 

0.008 
(0.035) 

75 
1500 

0.161 
(0.027)*** 

0.039 
(0.014)*** 

479 
9121 

Note: Standard errors in parentheses; ** significant at 5 percent; *** significant at 1 percent. 
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Table 2.4: Herding: GMM. OLS. and LSDV 

(1) (2) (3) (4) 

Panel A: Difference GMM 
Lag Fraction Buy 

Lag Returns 

Divident Yield Growth 

Earning/Share Growth 

Assets/Share Growth 

Number of Stocks 
Observations 

0.178 
(0.035)*** 

0.003 
(0.036) 

75 
1425 

0.182 
(0.035)*** 

-0 .007 
(0.036) 
-0 .070 
(0.113) 

74 
1406 

0.180 
(0.042)*** 

-0 .026 
(0.036) 
-0 .035 
(0.109) 
0.459 

(0.282) 

72 
1187 

0.176 
(0.042)*** 

-0 .041 
(0.041) 
-0 .033 
(0.097) 
0.660 

(0.262)** 
2.488 

(1.908) 
71 

1169 

Panel B: OLS 
Lag Fraction Buy 

Lag Returns 

Divident Yield Growth 

Earning/Share Growth 

Assets/Share Growth 

Number of Stocks 
Observations 

0.298 
(0.031)*** 

0.027 
(0.042) 

75 
1500 

0.300 
(0.031)*** 

0.015 
(0.044) 
0.014 

(0.022) 

75 
1480 

0.297 
(0.033)*** 

- 0 005 
(0.044) 
0.005 

(0.031) 
0.084 

(0.060) 

75 
1269 

0.284 
(0.034)*** 

-0 .007 
(0.043) 
0.003 

(0.031) 
0.104 

(0.063)* 
0.067 

(0.261) 
75 

1251 

Panel C: LSDV 
Lag Fraction Buy 

Las Returns 

Divident Yield Growth 

Earning/Share Growth 

Assets/Share Growth 

Number of Stocks 
Observations 

0.102 
(0.028)*** 

-0 .008 
(0.041) 

75 
1251 

0.103 
(0.028)*** 

-0 .008 
(0.041) 
-0 .011 
(0.024) 

75 
1251 

0.101 
(0.028)*** 

-0 .010 
(0.041) 
-0 .008 
(0.024) 
0.127 

(0.066)* 

75 
1251 

0.101 
(0.028)*** 

-0 .010 
(0.041) 
-0 .008 
(0.024) 
0.127 

(0.066)* 
0.016 

(0.025) 
75 

1251 

Note Standard errors m parentheses, **sigmficant at 5 percent, *** significant at 1 percent. 
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Table 2.5: Hausman Test 

Fixed Effects 

Panel A: 2003Q1 • 

Lag Fraction Buy 
Lag Returns 
Dividend Yield Growth 
Earning/Share Growth 
Assets/Share Growth 
Prob>Chi2 

0.153 
0.001 

-0.010 
0.013 

-0.006 
0.000 

Panel B: 1999Q1 -

Lag Fraction Buy 
Lag Returns 
Dividend Yield Growth 
Earning/Share Growth 
Assets/Share Growth 
Prob>Chi2 

0.228 
0.068 

-0.004 
0.014 
0.073 
0.000 

Random Effects 

- 2007Q4 

0.301 
0.001 

-0.008 
0.009 

-0.007 

• 2002Q4 

0.297 
0.087 

-0.004 
0.020 
0.083 

Difference 

-0.147 
-0.000 
-0.002 
0.004 
0.001 

-0.068 
-0.019 
0.000 

-0.006 
-0.0010 

S.E. 

0.0106 

0.003 

0.010 
0.009 
0.000 
0.003 
0.014 

Note: Fixed effects yields consistent coefficients while random effects yield effi­
cient coefficients. HO: difference in coefficients is not systematic. 

Table 2.6: 

eps 

Hadri (2000) Panel Unit Root Test, 

Z(mu) P-value 

2003Q1 -

Z(tau) 

- 2007Q4 

P-value 

Fraction Buy 

Homo 
Hetero 
SerDep a 

9.144 0.0000 
7.301 0.0000 
5.912 0.0000 

6.579 
6.250 
8.600 

0.0000 
0.0000 
0.0000 

Log Returns 

Homo 
Hetero 
SerDep 

-6.422 1.0000 
2.294 0.0109 

-2.711 0.9966 

-6.465 
-4.835 
3.899 

1.0000 
1.0000 
0.0000 

Dividend Yield Growth 

Homo 
Hetero 
SerDep 

3.342 0.0004 
9.643 0.0000 
8.596 0.0000 

-3.270 
-3.019 
8.455 

0.9995 
0.9987 
0.0000 

Note: HO: all 74 time series in the panel are stationary processes. Homo: 
homoskedastic disturbances across units. Hetero: heteroskedastic disturbances 
across units. SerDep: controlling for serial dependence in errors (lag trunc = 3) 
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Table 2.7: Hadri (2000) Panel Unit Root Test, 1999Q1 - 2002Q4 

eps Z(mu) P-value Z(tau) P-value 

Fraction Buy 

Homo 
Hetero 
SerDep a 

6.304 0.0000 
6.160 0.0000 
4.388 0.0000 

6.095 
2.142 
10.524 

0.0000 
0.0161 
0.0000 

Log Returns 

Homo 
Hetero 
SerDep 

-0.587 0.7215 
-0.696 0.7568 
1.848 0.0323 

0.118 
-0.283 
10.018 

0.4529 
0.6113 
0.0000 

Dividend Yield Growth 

Homo 
SerDep 

-4.091 1.0000 
0.591 0.2774 

-3.747 
9.277 

0.9999 
0.0000 

Note: HO: all 74 time series in the panel are stationary processes; Homo: 
homoskedastic disturbances across units; Hetero: heteroskedastic disturbances 
across units; SerDep: controlling for serial dependence in errors (lag trunc = 3) 

Table 2.8: Levin-Lin (2002) Unit-Root Test, 2003Q1 - 2007Q4 

Fraction Buy Log Returns Dividend Yield Growth 

-0.838 
(0.034)** 

Observations 1425 
R-squared 0.30 

Note: Standard errors in parentheses. 
at 1 percent. 

-1.246 
(0.040)** 

1425 
0.40 

-1.089 
(0.041)** 

1406 
0.33 

. ** significant at 5 percent; *** significant 

Table 2.9: Levin-Lin (2002) Unit-Root Test, 1999Q1 - 2002Q4 

Fraction Buy Log Returns Dividend Yield Growth 

Observations 
R-squared 

-0.921 
(0.041)** 

1050 
0.32 

-1.203 
(0.041)** 

1050 
0.45 

-1.198 
(0.041)** 

1036 
0.45 

Note: Standard errors in parentheses; ** significant at 5 percent; *** significant at 1 percent 
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Table 2.10: List of Real Estate Stocks 

Ticker 

ABR 
ACC 
ADC 
AEC 
AFR 
AFREX 
AHR 
AHT 
AIV 
AKR 
ALX 
AMB 
ANH 
ANL 
ARE 
AVB 
BDN 
BEE 
BFS 
BMR 
BRE 
BRT 
BXP 
CBL 
CDR 
CLI 
CLP 
CMO 
CPT 
CSA 
CSE 
CT 
CUZ 
DDR 
DFR 
DLR 
DRE 
DRH 
DX 
EDR 
EGP 
ELS 

Name 

Arbor Realty Trust Inc 
American Campus Communities Inc 
Agree Realty Corp 
Associated Estates Realty Corp 
Afren Pic 
AssetMark Real Estate Securities Fund 
Anthracite Capital Inc 
Ashford Hospitality Trust Inc 
Apartment Investment and Management Co 
Acadia Realty Trust 
Alexander's Inc 
AMB Property Corp 
Anworth Mortgage Asset Corp 
American Land Lease Inc 
Alexandria Real Estate Equities Inc 
AvalonBay Communities Inc 
Brandywine Realty Trust 
Strategic Hotels and Resorts Inc 
Saul Centers Inc 
BioMed Realty Trust Inc 
BRE Properties Inc 
BRT Realty Trust 
Boston Properties Inc 
CBL and Associates Properties Inc 
Cedar Shopping Centers Inc 
Mack-Cali Realty Corp 
Colonial Properties Trust 
Capstead Mortgage Corp 
Camden Property Trust 
Cogdell Spencer Inc 
CapitalSource Inc 
Capital Trust Inc 
Cousins Properties Inc 
Developers Diversified Realty Corp 
Deerfield Capital Corp 
Digital Realty Trust Inc 
Duke Realty Corp 
DiamondRock Hospitality Co 
Dynex Capital Inc 
Education Realty Trust Inc 
EastGroup Properties Inc 
Equity Lifestyle Properties Inc 

Source: Spectrum data, available through Thompson Financial Ownership Database. 

34 



www.manaraa.com

Table 2.11: List of Real Estate Stocks (Cont'd) 

Ticker 

EPR 
EQR 
EQY 
ESS 
EXR 
FBR 
FCH 
FMP 
FPO 
FR 
FRT 
FUR 
GCT 
GGP 
GRT 
GTY 
HCN 
HCP 
HIW 
HME 
HPT 
HR 
HRP 
HST 
IMH 
IRC 
JRT 
KIM 
KRC 
KRG 
LHO 
LRY 
LSE 
LTC 
LUM 
LXP 
MAA 
MAC 
MFA 
MPG 
MPW 
NCT 

Name 

Entertainment Properties Trust 
Equity Residential 
Equity One Inc 
Essex Property Trust Inc 
Extra Space Storage Inc 
Friedman Billings Ramsey Group Inc 
Felcor Lodging Trust Inc 
Feldman Mall Properties Inc 
First Potomac Realty Trust 
First Industrial Realty Trust Inc 
Federal Realty Investment Trust 
Winthrop Realty Trust 
GVIC Communications Corp 
General Growth Properties Inc 
Glimcher Realty Trust 
Getty Realty Corp 
Health Care REIT Inc 
HCP Inc 
Highwoods Properties Inc 
Home Properties Inc 
Hospitality Properties Trust 
Healthcare Realty Trust Inc 
HRPT Properties Trust 
Host Hotels and Resorts Inc 
Impac Mortgage Holdings Inc 
Inland Real Estate Corp 
JER Investors Trust Inc 
Kimco Realty Corp 
Kilroy Realty Corp 
Kite Realty Group Trust 
LaSalle Hotel Properties 
Liberty Property Trust 
CapLease Inc 
LTC Properties Inc 
Luminent Mortgage Capital Inc 
Lexington Realty Trust 
Mid-America Apartment Communities Inc 
Macerich Co 
MFA Mortgage Investments Inc 
Maguire Properties Inc 
Medical Properties Trust Inc 
Newcastle Investment Corp 

Source: Spectrum data, available through Thompson Financial Ownership Database. 
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Table 2.12: List of Real Estate Stocks (Cont'd) 

Ticker 

NHI 
NHP 
NLY 
NNN 
NRF 
O 
OFC 
OHI 
OLP 
PCH 
PCL 
PEI 
PGE 
PKY 
PLD 
PPS 
PSA 
RAS 
REG 
RPT 
RWT 
RYN 
SFI 
SHO 
SKT 
SLG 
SNH 
SPG 
SSS 
SUI 
TCO 
TMA 
UDR 
UHT 
VNO 
VTR 
WRE 
WRI 
YSI 

Name 

National Health Investors Inc 
Nationwide Health Properties Inc 
Annaly Capital Management Inc 
National Retail Properties Inc 
NorthStar Realty Finance Corp 
Realty Income Corp 
Corporate Office Properties Trust 
Omega Healthcare Investors Inc 
One Liberty Properties Inc 
Potlatch Corp 
Plum Creek Timber Co Inc 
Pennsylvania Real Estate Investment Trust 
Progress Energy Ltd 
Parkway Properties Inc 
ProLogis 
Post Properties Inc 
Public Storage 
RAIT Financial Trust 
Regency Centers Corp 
Ramco-Gershenson Properties Trust 
Redwood Trust Inc 
Rayonier Inc 
iStar Financial Inc 
Sunstone Hotel Investors Inc 
Tanger Factory Outlet Centers Inc 
SL Green Realty Corp 
Senior Housing Properties Trust 
Simon Property Group Inc 
Sovran Self Storage Inc 
Sun Communities Inc 
Taubman Centers Inc 
Thornburg Mortgage Inc 
UDR Inc 
Universal Health Realty Income Trust 
Vornado Realty Trust 
Ventas Inc 
Washington Real Estate Investment Trust 
Weingarten Realty Investors 
U-Store-It Trust 

Source: Spectrum data, available through Thompson Financial Ownership Database. 
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Figure 2.2: Herding and REITs Share Prices 
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Chapter 3 

Stochastic Herding by Institutional 

Investment Managers 

3.1 Introduction 

The 2007 collapse of the U.S. asset bubble has provided researchers with the oppor­

tunity to look afresh into the causes of financial instability and crises, including the 

role played by herding behavior. One of the lesser known chapters in the unravel-

lings of the 2007-2008 crisis has been a substantial sell-off of equities by institutional 

investors a few quarters before the general market downturn that began in earnest 

in the summer of 2007. Institutional investors manage between 60 and 70 percent 

of outstanding U.S. stocks and are regarded as sophisticated investors whose ris­

ing importance in capital markets has been extensively documented by Gompers 

and Metrick (2001) among others. As Figure 3.1 shows, managers of pension and 
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endowments funds (who account for 48 percent of total market value of S&P 500 

stocks or approximately 80 percent of total institutional holdings) began dumping 

S&P 500 stocks during 2006:Q2 and within four quarters virtually reverted their eq­

uity exposure to the pre-2003 level. Forced liquidation cannot explain such marked 

reduction in institutional stock ownership since at the time major risk indicators 

were still low and credit markets were not yet under stress1. Herding, on the other 

hand, can provide an alternative explanation. This is because in addition to funding 

risks institutional investment managers face what Abreu and Brunnermeier (2002. 

2003) call "synchronization risk" - the risk of selling an overvalued stock too early, 

before a critical mass of other investors sells, or too late, after a critical mass of 

other investors sells. Missing the timing of the price correction in either case would 

lead to losses and underperformance relative to other managers in the short-run. 

Such incentive to synchronize with other investment managers due to short time 

horizons and relative performance considerations (Shleifer and Vishny (1997)) can 

lead to herd behavior. 

We consider a model of large number of institutional investment managers 

who simultaneously decide whether to remain invested in an assets or liquidate their 

positions. The managers are rational but myopic. This feature is particularly suit­

able for modeling fund manager behavior whose performance is often evaluated on 

short-term basis and relative to other managers 2 The prospect of earning excess 

1See Brunnermeier (2009) for the timing of the 2007-2008 liquidity and credit crunch 
2 Our model is intended to explain fund manager choice of action at quarterly frequency so im­

plicitly we assume that each manager optimizes with one quarter ahead horizon Another class of 
investors whose behavior we do not model include individual investors and managers of funds with 

40 



www.manaraa.com

returns by riding the trend for an additional time period is weighed against the 

possibility that a large enough number of fund managers will dump the stock today 

overwhelming the market liquidity and forcing the price to drop, resulting in losses 

for those who remain. Each fund manager receives imperfect information about the 

market's ability to supply liquidity. In Bayesian Nash equilibrium each manager 

chooses whether or not to continue holding the security based on her private infor­

mation and the actions of other investment managers3. The equilibrium strategy 

of investment managers exhibits complementarity, since each fund manager is more 

likely to liquidate when a greater number of others are liquidating. Herding in this 

environment is stochastic because it turns out that in equilibrium each manager 

assigns greater weight to the actions of others than her own private information 

only with a certain probability. In the aggregate, the model predicts a non-trivial 

probability of "explosive" incidents of uniform coordination on the same action. 

Whereas the central limit theorem characterizes an outcome of a simple 

information aggregation process, choice correlations (e.g. herding) leads to fat tail 

effects. In particular, the equilibrium fraction of investment managers that herd on 

the same action is described by a probability distribution that exhibits exponential 

substantial restrictions on customer redemptions, access to a wider variety of investment instru­
ments, and subject to less stringent regulations. These investors operate at a different performance 
horizon and have served as liquidity providers during such episodes as the 1987 stock market crash 
(Fung and Hsieh (2000)) to the more constrained institutional investors such as pension funds, 
endowment funds, and insurance companies that we focus on in this study. 

The reliance on the actions of others for information rather than making decision based on 
prices alone implies that not all interactions between agents are mediated through the market and 
that these interactions are not anonymous, Cowan and Jonard (2003). For instance, Shiller and 
Pound (1989) find that word-of-mouth communications are important for the trading decisions of 
both individuals and institutional investors. 
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decay. This probability distribution can be observed even before the "explosive" sell­

out takes place potentially allowing us to quantify what Rajan (2006) has dubbed 

the "hidden tail risk."4 

We examine quarterly data from 13F filings with the Securities and Ex­

change Commission (SEC) in which institutional investment managers report the 

number of shares under management for each individual security. We find that 

the distribution of the number of institutional investment managers selling off their 

shares several quarters before the peak of the S&P 500 index in 2007 is consistent 

with herding. The parameter capturing the degree of herding behavior rises over 

time until the first quarter of major institutional sell-off of S&P 500 stocks. The 

transition to the sell-off itself is consistent with self-organized criticality following 

Bak et al. (1997). As the exponential decay vanishes in the probability distribu­

tion of institutional trades we obtain a (pure) power law distribution. Once that 

happens, an explosive synchronization occurs sooner or later. Then, through the 

information revealed by the actions of others, it becomes common knowledge among 

traders that the bubble has burst. Accordingly, all traders choose sell. However, 

liquidation needs and other considerations at the fund level imply that traders' be­

havior may vary due to idiosyncratic reasons. Thus, we only observe an aggregate 

of idiosyncratic variations in behavior, which leads to a normal distribution due to 

the Central Limit Theorem. The symmetric behavior is not found on the buy side 

4Morris and Shin (1999) also argue that choice interdependence among traders must be explicitly 
incorporated into estimates of "value at risk" and call for greater attention to game-theoretic issues 
since market outcomes depend on the actions of market participants. 
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in line with investors reacting differently to potential losses than to potential gains. 

The paper is organized as follows. Section 3.2 presents the model of 

stochastic herding, derives the equilibrium distribution of herding agents, and con­

ducts numerical simulations of the model. Section 3.3 examines the distribution 

of the actions by institutional investment managers from 2003:Q1 through 2008:Q1 

covering both the run-up to and the collapse of the most recent U.S. equity bubble. 

In this section we compare the empirical distribution to the numerical simulations, 

evaluate the fit of the distribution implied by the model of stochastic herding against 

several alternatives, and overview the evolution of this behavior over time. Section 

3.4 concludes. 

3.2 Model 

3.2.1 Threshold Switching Strategy 

In this section, we present a model of stochastic herding of informed traders. Our 

model setup is motivated by Abreu and Brunnermeier (2003) in which traders try 

to time their exit from a bubble maket. In this setup, we apply an analytical tool 

shown by Nirei (20066) in order to obtain the distributional pattern of traders' 

herding. This distributional form then motivates our empirical investigation in the 

next section on the distributions of the herd size of institutional traders before and 

during the sell-out period. 

There are N informed institutional investment managers indexed by i = 
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1,2,.. . , AT, for conciseness we will refer to them simply as traders. Each trader is 

endowed with one unit of risky asset. The trader gains (g — r)p by riding on bubbles 

and loses j3p if the bubble bursts. Trader i can either sell (a,, = 1) or remain in 

the same position {at = 0). Each trader observes the aggregate number of selling 

traders a = X^=i ai a n d a private signal xx. Let a denote the fraction of selling 

traders a = a/N. 

Market liquidity is denoted by 9. 5 The informed traders cannot observe 

6, but only observe a noise-ridden proxy x% = 6 + ez. xl is a private information and 

€i is independent across traders. 

The bubble bursts if the selling pressure by the informed traders over­

whelms the liquidity provided by the noise traders. The burst occurs if a > 8. 

Informed traders' expected utility of holding the asset is: 

(g — r)pPv(6 > a \ xl,a,al = 0) — f3pPr(6 < a \ xl,a,al = 0), (3.1) 

and the expected utility of selling is 0. Then the optimal strategy is to sell if: 

g-r Pr(0 < a \ x^a,^ = 0) 
P P r ( 0 > a \xl,a,at = 0y { ' ' 

59 represent the liquidity provided by market participants other than institutional investors, such 
as individual investors or alternative investors (e.g. hedge funds) with lock up periods and greater 
choices of investment instruments thus not subject to short-term performance considerations. We 
do not model their behavior, hence refer to this group simply as noise traders. 
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or, equivalently, 

9~r Pr(xi,a,g t = 0, 6 < a) 

and hold otherwise. 

3.2.2 Equil ibrium 

We make a guess that all traders follow a threshold rule that trader i sells iixt < x(a) 

and holds otherwise. We will verify this guess later. We consider a Nash equilibrium 

in which each trader does not have an incentive to deviate from the threshold rule 

at any observation (x%,a), given that all the other traders obey the rule. When 

there are multiple equilibria for a realization of the private information (x%). the 

outcome with the smallest a is selected. We denote the selected equilibrium by 

a*. This equilibrium can be implemented by submission of supply schedule to a 

market maker. In this scheme, each trader submits their action of selling or holding 

conditional on a, and the market maker selects the smallest a such that it is equal 

to the aggregate supply conditional on a. The equilibrium can be interpreted as the 

outcome of a sequential trading where informed traders can sell immediately after 

observing the selling of other traders. 
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Define: 

G{x,a) = Pr(xj > x(a) \ 9 < a/N) (3.4) 

F{x,a) = Pr{Xj > x(a) \ 9 > a/N) (3.5) 

A(x,a) = G(x,a)/F(x,a) (3.6) 

5{Xl,a) = PT(xue<a)/PT(xuO>a) (3.7) 

A(x, a) represents the information revealed by a holding trader at the observed 

supply a. The information is expressed in the form of an odds ratio. 6(xt, a) is the 

odds ratio obtained by the private information xt. 

Under the guessed threshold policy, the joint probability in (3.2) can be 

decomposed by the information revealed by the actions of traders. For example, 

when a = 0, the joint probability is written as: 

Pr(xJ, a = 0, at = 0,0 < 0) = Pr(x, | 6 < 0) P r fo > x(0) | 9 < 0)N~l Pr(fl < 0) 

(3.8) 

Then, (3.3) is rewritten for a = 0 as: 

< A(x(0),0)N-l6(Xl,0) (3.9) 
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Thus. x(0) is implicitly determined by: 

9-—- = A(x(0), O^-^xiO), 0) (3.10) 

Now consider the case a > 0. If a > 0 were chosen to be an equilibrium, 

it reveals that no smaller supply a' = 0 , 1 , . . . ,a — 1 is consistent with the supply 

schedule, since the market maker chooses the smallest a that is consistent with the 

supply schedule. Thus, the equilibrium reveals not only that there are a traders 

who sell conditional on a, but also that there are at least a' + 1 traders who sell at 

a' for each a' < a. 

Therefore, there are a traders with private information x% < x(a). there 

are at least a traders with private information xz < x(a—l). there are at least a — 1 

traders with xz < x{a — 2). and so forth up to that there is at least 1 trader with 

xt < x(0). This set of conditions is equivalent to that there is one trader in each 

region xt < x(a') for all a1 - 0 , 1 , . . . , a — 1. 

Consider the trader who would hold at a' — 1 but sell at a'. Define the 

information revealed by such a trader at equilibrium a as follows: 

_ P r ( g j < s(q') [ 9 < a/N) 
B{x{a), a) - ^ _(f l /) ! e ^ a/N) [6.11) 
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Then, the selling condition (3.3) is rewritten for a = 1 as: 

9-y- < S(xt, l)A(x(l), l)N-2B(x(0), 1). (3.12) 

Then. x(l) is determined by x% = x(l) that equates the both sides above. Generally, 

the threshold x is determined recursively by the equation: 

a - l 

^ - = 8(x{a), a)A(x(a), a ) " " 1 - " J J B{x(k), a) (3.13) 
^ fc=0 

for a = 0,1, 2 , . . . , N — 1. We note that the posterior likelihood in (3.3) has three 

components: the private information x%. the information revealed by holding actions 

of N — 1 — a traders, and the information revealed by selling actions of a traders. 

We assume that the prior belief on 9 and the noise ex jointly follow a bivari-

ate normal distribution with mean (#o50) and variance (c^Cg). Then (6,xl) also 

follows a bivariate normal distribution, since x% = 9 + el. The normal distribution 

implies that: 

Pr(x^ >x\0)< Fr(xj > x\9'), for any 9 < 9' (3.14) 

Thus, 

_ Pr(s , > x j 9 < a/N) 
A[X'a)--Pr(xJ>x\9>a/N)<1 ( 3 J 5 ) 
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for any a and x. Likewise. 

Pr(x, < x \9 < a N) ,n „. 
B(x,a) = - ) J ~—hi -rr; > 1- (3-16) 

v ' ;
 PT(X3 <x\9> a N) v ! 

The threshold policy has the following property. 

Proposition 1. The threshold function x(a) is increasing in a. 

Proof: See Appendix B.l. 

Using the increasing threshold strategy, we obtain the existence of an equi­

librium. To see that, define an aggregate response function as V : { 0 , 1 , . . . , N} i->-

{ 0 , 1 , . . . , N} for a fixed realization of (xz). T maps the observed a to the number 

of traders who decide to sell upon the observation a', given (xl). Then, a' is the 

number of traders with x% < x(a). Since x is increasing in a. V is a non-decreasing 

step function. Hence F has a fixed point in { 0 , 1 , . . . , iV} by Tarski's fixed point 

theorem. 

Proposition 2. An equilibrium a* exists for each realization of a vector (xt). 

Proof: See Appendix B.2. 

Next, we construct a fictitios tatonnement process that converges to the 

equilibrium a* as a means to characterize the equilibrium. First, we define —H'/H 

as the hazard rate for the traders who have remained holding the asset to sell 

upon observing a. Let 6\ denote the true parameter for the liquidity 9. Then 

( * , - f l i ) 2 

H{x) = J-e 2ae dxj/y/27rae. We define //(a) as the mean number of traders 
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who do not sell upon observing a — 1 but decide to sell upon observing a. Then: 

H{a) = (H(x(a - 1)) - H(x{a)))(N - a). (3.17) 

//(a) is also expressed by the product of the increment in the threshold x(a+l)—x(a), 

the hazard rate, and the number of traders who continue to hold the asset: 

^ H',_, , , . , „ , . . , H'/Hlog(B/A) + (dA/da)/A , 0 1 0 , 
Ai(a) ~ ~(x(a + 1) - x(a))(N - a) - • F / / F (Gi/Fj/A - 1 ( 3 - 1 8 ) 

Now. as a fictitious tatonnement process, we consider a best response dy­

namics au+i = r (a u ) that starts from ao = 0, where au+i denotes the number of 

traders with private information xt < x(au). We can show that the best response 

dynamics can be regarded as a tatonnement which converges to the selected equi­

librium a*. 

Proposition 3. For any realization of 8 and (xz), the best response dynamics au 

converges to the equilibrium selected by the market maker, a*. 

Proof. Suppose that the best response dynamics did not stop at a*. Then there 

exists a step s so that as < a* < a s+i. But, the definition of a* prohibits that there 

is any a' < a* such that the number of traders with xz < x{a!) exceeds a*. Hence, 

there is no such s. • 

Unconditional on the realization of the private information, (au) can be 

regarded as a stochastic process. In the first step. a\ follows a binomial distribution 
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with population N and probability x(0). In the subsequent steps, the increment 

a u + i — au conditional on au follows a binomial distribution with population N — au 

and probability H(x(au-i)) - H(x(au)). 

As N —> oo. the binomial distribution asymptotically follows a Poisson dis­

tribution with mean (N — au)(H(x(au-i)) — H(x(au))). Now consider a special case 

where /j,(a) defined in (3.17) is constant across a asymptotically as N —> oo. Then, 

the asymptotic mean of the Poisson distribution above becomes (au — au_i)/z. A 

Poisson distribution with this mean is equivalent to [au — au-i)-times convolution of 

a Poisson distribution with mean //. Thus, in this particular case, the best response 

dynamics asymptotically follows a branching process with a Poisson distribution 

with mean fj,. which is a population process that starts with the "founder" popula­

tion with a± and each "parent" bears "children" whose number follow the Poisson 

with mean \i. The selected equilibrium a* is the cumulated sum of the branching 

process. The following is known for the distribution function of the cumulated sum 

of a branching process. 

Theorem 1. Consider a branching process bu, u = 1,2,..., in which the number of 

children born by a parent is a random variable with mean fi. 

1. When b\ = 1, the cumulated sum Z = Yl^Li bu follows: 

Pr(Z = z | bx = 1) ~ c^z'1 5 (3.19) 

for a constant c > 1 with the equality holding if and only if /i = 1. The symbol "~" 
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means that the ratio of the both sides converges to a constant as z —>• oo. 

2. The branching process converges to zero with probability one if and only if \i < 1. 

3. If the number of children born by a parent follows a Poisson distribution with mean 

ft, then: 

Pv(Z = z\bi) = {b1/z)e-f"z(^z)z-bl/(z - h)\ (3.20) 

for z = &i,&i + 1 , . . . . 

4- In addition to the previous assumption, if b\ follows a Poisson distribution with 

mean \i\, then: 

Pr{Z = z) = fue-^+^biz + iiiy^/zl (3 21) 

- (lie^yz-15 (3.22) 

The first item in this theorem implies that the number of traders in a herd 

follows a non-normal distribution function which exhibits a power-law decay with 

exponential truncation. The second item means that the best response dynamics 

converges with probability one, and thus it verifies that the best response dynamics 

serves as a valid fictitious tatonnement. The third and fourth terms further char­

acterize the herd size distribution. This particular distribution forms our preferred 

hypothesis in the empirical investigation of the herd size distribution in the next 

section. 
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3.2.3 Numerical Simulations 

Before we move on to our empirical investigation, we numerically compute the model 

threshold x(a) and the equilibrium a*. The purpose of this simulatation is to show 

that the herd size distribution of the exact equilibrium a* follows the same distri­

bution as that we obtained above analytically under approximation. We set the 

parameter values as follows. The number of institutional investors is N = 160. The 

return from riding the bubble is g — 0.1, the interest rate is r = 0.04, and the 

discount by the burst of the bubble is (3 = 0.82. The liquidity 6 follows a normal 

distribution with mean 0.5 and standard deviation 0.3. The noise e, follows a normal 

distribution with zero mean and standard deviation 1. 

Figure 3.2 [about here] 

Figure 3.2 plots the threshold function x(a) and the conditional mean 

function [i(a). The plot is truncated at the point a = 140, since for higher a 

we could not compute x because it is too large. 

Figure 3.3 [about here] 

We then simulate the distribution of equilibrium a. We compute a for each 

draw of a random vector (ej), and iterate this for 100000 times. We observe a = 0 

for 72908 times, and observe a = 140 (the upper bound) for 1215 times. Figure 3.3 

plots the histogram of the all 100000 observations. In Figure 3.3, it is clear that a 

is distributed similarly to an exponential distribution for 0 < a < 50. There is no 
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incident of a > 50 except for the 691 "explosive" incidents in which case basically 

all the traders decide to sell. 

Figure 3.4 [about here] 

Figure 3.4 plots the blowups of the histogram for 0 < a < 160. The left 

panel plots the histogram in linear scale and the right panel plots it in semi-log 

scale. The distribution exhibits exponential tail and forms a straight line on semi­

log scale characteristic of non-Gaussian decay and a heavy tail. This is due to 

the persistent outliers due to the non-randomness in the underlying data generating 

process. The shape of the probability density function of the equilibrium distribution 

of a d is illustrated in Figure 3.9 in the Appendix. It is closely related to a Gamma 

distribution, but with the shape parameter restricted to actual the value of the 

variable, thus effectively attenuating the tail beyond a "typical" Gamma. 

3.3 Evidence from Institutional Equity Holdings 

3.3.1 Data Description and the Unit of Observation 

We study the behavior of institutional investment managers around the latest run­

up and the subsequent collapse of the U.S.stock market associated with the asset 

bubble of the 2000s. Specifically, we examine institutional investor holdings of stocks 

included in the S&P 500 index during the period from 2003:Q1 through 2008:Q1. As 

has been discussed in the introduction, institutional investors increased their equity 
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holdings markedly between 2003:Q1 and 2006:Q1 after which point the majority of 

them, especially pension and endowment funds, began reducing their stock portfo­

lios to the pre 2003 levels. This episode provides a unique opportunity to examine 

the role played by herding in the propagation of such massive adjustment. Herd­

ing behavior is especially suspect because this marked adjustment in institutional 

portfolios preceded the onset of the credit crisis and cannot be attributed to forced 

liquidations. 

We use data on institutional equity holdings from Spectrum database avail­

able through Thompson Financial6. Thus, we utilize two sources of variation in stock 

holdings not commonly found in data: the variation across individual investors and 

the variation across a group of closely related securities. This means that instead of 

observing one realization of the aggregate action during each period one can observe 

a sample of data points large enough to get an insight into the underlying data gen­

erating mechanism by looking at its distribution. Each observation in the sample 

is a group of institutional investors that fall within same class (e.g. banks, pension 

funds, etc.) holding the same stock. The data is complied from quarterly 13F filings 

with SEC in which institutional investment managers with over $100 million under 

discretionary management are required to report their long positions in exchange 

traded stocks, closed-end investment companies, equity options and warrants. 

Table 3.1 [about here] 

6Studies that utilize 13F data include Gompers and Metrick (2001), Brunnermeier and Nagel 
(2004), Sias (2004), and Hardouvelis and Stamatiou (2009) 
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Table 3.1 shows the breakdown of institutional investment managers in 

our sample by type for each quarter from 2003:Q1 through 2008:Q1. Pension and 

endowment funds comprise the largest reporting category ranging between 71% 

and 80% of all instutional investment managers. Investment advisers comprise the 

second largest categoy followed by investment companies, insurance companies, and 

banks. For instance, in 2008:Q1 the dataset includes 2,119 pension and endowmnets 

funds, 521 investment advisers, 96 investment companies, 19 insurance companies, 

and 9 banks. 

Table 3.2 [about here] 

As Table 3.2 illustrates, institutional investors hold the majority of out­

standing U.S. equities, as proxied by the S&P 500 stocks. The share of institutional 

holdings rose from 53% in 2003:Q1 to 67% in 2006:Q1 then declined steadily through 

2008:Q1. Pension and endowment funds are the most dominant category accoun­

t i n g for more than four fifth of total institutional holdings of S&P 500 stocks. 

Table 3.3 [about here] 

The high degree of disaggregation in the Spectrum data allows us to group 

institutional investment managers into stock-investor-type groups, N(j,k), where j 

indicates an S&P500 stock and k indicates institutional investor type. For example, 

iV(APPL, Banks and Trusts) is the number of banks and trusts that own Apple 

stock. Only groups with 10 traders or more are included in the sample. Table 
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3.3 shows the summary statistics. The number of quarterly observations for N(j, k) 

ranges from 1,535 to 1,882. The size of the groups varies considerably, with quarterly 

mean ranging from 114 to 146, and quarterly maximum ranging from 1,046 and 

1,222. Each quarter a(j, k) out of N(j, k) institutions in each group liquidate their 

holdings. Institutional managers dumping more than 80% of their holdings are 

counted into a(j, k)7 but the results are generally robust to different cutoff levels. 

3.3.2 S u m m a r y S t a t i s t i c s 

Table 3.4 shows quarterly summary statistics for a(j,k). Note the stark difference 

between 2006:Q2 through 2007:Q1 and the surrounding quarters. During 2006:Q2 

through 2007:Q1 the mean a(j,k) is between 104 and 117 compared to 2 and 4 in 

other quarters and the maximum during this four quarter period ranges from 1057 

to 1114 compared to 23 and 347 during other quarters. The corresponding fraction 

of institutions liquidating a stock, a(j, k)/N(j, k), controls for any group size effect 

in the values of a(j,k). Table 3.5 shows the summary statistics for a(j,k)/N(j,k) 

confirming that during the period of 2006 :Q2 through 2007: Ql is associated with 

large a large liquidation of stocks by institutional investment managers. The mean 

fraction of institutional managers liquidating a stock jumped to the 79% and 89% 

range from the earlier range of 3% to 4%. Moreoever, during this four quarter 

7The model of stochastic herding yields prediction regarding an "extreme" event, namely a com­
plete liquidation of a position in a security. Realistically, large block holders, such as institutional 
investors, are restricted in their ability to unload a substantial number of shares at once, therefore 
we interpret the sale of 80% or greater share as an extreme event. The results are robust to different 
levels of cutoff, however, choosing the cutoff at 100% as stipulated by the model greatly reduces 
the number of observations while missing valuable information contained in extremely large sales 
approaching 100%. 
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period some stock-investor type groups experienced complete liquidation as seen 

from the maximum a(j, k)'s of 100%. In sum, the summary statistics of a(j, k) and 

a(j, k)/N(j, k) in Tables 3.4 and 3.5 illustrate a regime change in institutional equity 

holdings during 2006:Q2 through 2007:Q1 when the vast majority were dumping 

their S&P 500 stocks. We refer to this period as the sell-out phase. 

Table 3.4 & Table 3.5 [about here] 

Focusing on the two quarters immediately preceding the sell-out phase, 

the summary statistics of a(j, k) and a(j, k)/N(j, k) show a rise in both mean and 

maximum values compared to previous quarters indicating a possible shift in in­

stitutional investment managers' behavior beginning to take place. The mean of 

a(j, k) increased to 4 during 2005:4 and 2006:Q1 compared to 2 to 3 during all 

preceding quarters (Table 3.4) and the maximum a(j, k) is 105. more than double 

the value during the four preceding quarters. The corresponding fraction. a(j,k), 

also rose during 2005:Q4 and 2006:Q1 compared to the preceding quarters (Table 

3.5). This increase in the average and in the tail of the distribution of aggregate 

selling behavior may indicate greater degree of synchronization immediately before 

the regime change in 2006:Q2. In the remainder of the section we conduct distri­

butional analysis motivated by the model of stochastic herding to examine whether 

the attenuation in the distribution of a(j, k) during the run-up to the sell-out phase 

is a result of greater choice correlations and herding by institutional investment 

managers as opposed to being driven by random events. 
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3.3.3 Analysis of distribution 

The left panel of Figure 3.5 shows the histogram empirical o(j, k) for the entire 

sample period (2003:Q1 through 2008:Q1). The histogram bears close similarity to 

the numerical simulations of the model in Figure 3.3. Like the simulated a. the 

distribution of empirical o(j, k) exhibits exponential decay in the high probability 

mass region of low number of sellers along with a long tail indicating high probability 

of large outliers. The mean number of institutional fund managers dumping a 

particular stock is 23. while standard deviation is 79 and the maximum is 1114. 

Figure 3.5 [about here] 

To control for rare events on the "buy side" we also examine a symmetric 

indicator to a(j, k) for fund managers who increase their holdings of an S&P 500 

stock by more than 5 times (inverse of 0.80) during a given quarter. b(j,k). For 

each stock-investor-type group we then construct the net measure as a(j, k) — b(j, k) 

and normalize it by group size N(j,k). The right panel of Figure 3.5 shows the 

histogram of the corresponding fraction. The bimodality of the distribution indicates 

the presence of "explosive" sellout events, with virtually no observations in the 

intermediate range. Moreover, such extreme switching from low activity to high 

activity level is only present on the sell side, indicating that coordination on the 

same action characterizes sellouts but not purchases by institutional fund managers. 

Independent rare events, such as portfolio liquidations due to idiosyncratic 

shocks, should be well approximated by a Poisson distribution. On the other hand. 
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chain reaction through information revelation will cause a(j, k) to be distributed ac­

cording to Equation 3.22 (Theorem 1 ). Recall that in Equation 3.22, fix represents 

the Poisson mean of the number of agents taking extreme action at the beginning 

of the tatonnement process independently (responding only to their private signal), 

while /j, represents the total number of agents induced to follow the actions of the 

first-mover until the system settles at a new Bayesian Nash equilibrium. In other 

words, n quantifies the degree of herding. If \x = 0 then Equation 3.22 reduces to a 

probability density function of a Poisson distribution with arrival rate [i\ indicating 

the absence of herding (portfolio liquidations are independent of each other). On the 

other hand, as \i —> 1 the system tends to self organized criticality with "explosive" 

convergence on the same action. In the intermediate range, the probability distri­

bution of a(j, k) will exhibit exponential decay, with the speed of the decay dictated 

by [i. We can also think of /J, as a measure of length of the tail of the distribution -

larger \i implies that an initial outliers (itself governed by Poisson arrival rate /xi) 

attracts greater probability mass to itself, effectively attenuating the tail. 

Table 3.6 through Table 3.8 [about here] 

The common benchmark distribution for rare independent events is Pois­

son. Table 3.6 shows the results of Kolmogorov-Smirnov goodness of fit test for 

Poisson distribution to a(j,k). Poisson distribution is rejected at the 5% signifi­

cance level with p-value=0 and the test statistic of 0.769 (three orders of magnitude 

larger than the critical value of 0.008). Apart from non-randomness, Poisson may 
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also be rejected because the distribution of a discrete random variable with Poisson 

arrival rate asymptotes to normal in the limit. However, as Table 3.7 shows, the 

moments of a(j, k) point at a highly non-normal distribution (consistent with the 

histograms in Figure 3.5). If non-randomness results from stochastic herding then 

Equation 3.22 should adequately characterize the probability distribution of empri-

cal a(j, k). Table 3.8 shows the associated maximum likelihood estimates (MLE) of 

the distribution parameters. The estimates for /j,\ and JJ, are 2.058 and 0.938 and are 

statistically significant at 1% level, indicating that stochastic herding is a plausible 

candidate for the underlying data generating metchanism of empirical a(j, k). 

Figure 3.6 [about here] 

Figure 3.6 focuses on the four quarter period before the sell-out phase 

(2005:Q2 through 2006:Q1). The left panel of Figure 3.6 shows the histogram of 

empirical a(j, k) with distribution exhibiting exponential tail similar to the simu­

lation in Figure 3.4. The largest value in the histogram corresponds to 95. The 

right panel of Figure 3.6 shows the corresponding semi-log probability plot. The 

straight line formed by the observations of a(j, k) on the semi-log scale indicates a 

non-Gaussian heavy tailed distribution with persistent outliers, indicative of non-

randomness in the underlying data generating process. The solid line shows the 

fit corresponding to the stochastic herding outcome (of Equation 3.22) to the em­

pirical distribution of a(j,k). The line was formed by sampling the data from the 

proportional theoretical probability density (Equation 3.22) with parameters first 
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estimating using empirical a(j, k) via MLE and the proportionality constant set 

equal to the theoretical prediction for the power exponent of 1.5. 

3.3.4 The Sell-Out Phase in 2006:Q2-2007:Q1 

Figure 3.7 plots a(j, k)/N(j, k) against the cumulative distribution (log rank over 

number of observations). The left panel corresponds to the 2005:Q2 through 2006:Q1 

period, the four quarters preceding major institutional sales. The inverse of the slope 

of the semi-log plot provides an estimate of the mean parameter of an exponential 

distribution. A least squares regression for a(j, k)/N(J, k) yields an estimate of the 

slope of -31.443 (standard error 0.055) with an R-squared 0.988. This examina­

tion of the semi-log plots favors a model that generates exponential rather than 

normal decay in a(j, k)/N(j, k) during the final phase in the run-up to the shift in 

institutional behavior in 2006 :Q2. 

Figure 3.7 [about here] 

The probability plot in the left panel also shows a convex deviation from 

the exponential tail as the size of observations approaches zero. This is consistent 

with a Gamma-type distribution, such as the distribution in Borel-Tanner family, 

which exhibits an exponential tail with a power decline near zero. Moreover, notice 

a small number of observations that lie very far from the probability mass. A 

Gamma-type distribution would produce such outliers because for small values of 

the shape parameter all observations drawn from a Gamma distribution will have 
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the same expectation of the order 1/N, but there is high probability that at least 

one observation will be much greater than the average (Kingman (1993)). 

The intuition behind semi-log plots is as follows. Suppose the average per­

ception of the value of fundamentals is strong and the mean fraction of institutional 

investment managers liquidating a particular stock is small. In the absence of sell­

ing cascades within some stock-investor-type groups the probability of observing a 

given value of a(j, k)/N(j, k) would be declining at an increasing rate as we move 

further away from the mean. This Gaussian decay would produce a concave line 

in the semi-log plot. On the other hand, suppose investors are attempting to time 

the market by basing their actions on the actions of others. For example, within 

stock investor-type group a fund manager having observed a small fraction of other 

fund managers liquidating their holdings in a particular stock interprets this as the 

beginning of a "correction" and is induced to sell herself. If the conditions are so 

fragile that even in the absence of major changes in the fundamentals a number 

of investors are inclined to act as this hypothetical fund manager, then we would 

observe selling cascades within some stock-investor-type groups, creating outliers. 

Hence, if investment managers are locked in a herding regime then, even though 

the mean of the aggregate liquidation may still be low, the probability of observing 

large deviations from the mean will be higher than predicted by Gaussian decay 

that characterizes random deviations. 

The right panel shows the semi-log probability plots of a(j, k)/N(j, k)) for 

2006:Q2 through 2007:Ql. Consistent with transition from subcritical (/i < 1) to 
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supercritical phase (/x > 1), this four quarter period is characterized by a state of 

"explosive" sell-outs. When the system is supercritical, there is a positive probability 

in which all the traders sell (explosion). Thus our model predicts a probability mass 

for fraction a(j, k)/N(j, k) = 1. If we allow for other randomness not considered in 

our model, then it is natural to think that the actual fraction is normally distributed 

around the mean close to 1. 

The probability mass of a(j,k)/N(j,k) is concentrated in the region be­

tween 0.8 and 1.0, indicating that the vast majority of institutional investors where 

dumping most of their S&P 500 stock. The relatively close fit of the normal distri­

bution indicates that aggregate high mean value of a(j, k)/N(j, k)) is an informative 

summary statistic for the sell-out regime in the sense that the deviations from this 

high mean are random and the vast majority of institutions were liquidating their 

S&P 500 stocks during this period. 

In sum, Figure 3.7 conveys two things. First, the sell-out ensued as early 

as 2006:Q2 and continued for approximately 4 quarters. Second, institutional in­

vestors in the stock market operated according to two different regimes during the 

duration of the bubble. During the run-up phase, the distribution of the aggre­

gate action exhibits exponential decay, consistent with stochastic herding when the 

uncertainty over market timing actions of other institutional investment managers 

dominates. The exponential decay then vanishes during the sell-out phase. Such 

regime switching is consistent with transition from subcritical (// < 1) to supercrit­

ical phase (// > 1) with positive probability that all institutions act in unison (see 
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Theorem 1 ). 

Our hypothesis is that the process that generated empirical a(j, k) shown 

in Figure 3.6 is best described probability density in Equation 3.22. We fit the 

model implied distribution against three alternatives: a truncated normal. Gamma, 

and Exponential. Table 3.9 shows the results. 

Figure 3.6 & Table 3.9 [about here] 

The log likelihood values are higher for the model than any of the alterna­

tive distributions while truncated normal, which tests the possibility of Gaussian de­

cay, has the smallest log likelihood value. In addition we conduct a non-nested good­

ness of fit test using Vuong's statistic. It is based on Kullback-Leibler information 

criterion which tests if the hypothesized models are equally close to the true model 

against the alternative that one is closer. Defining lt = logL(i\H\) — logL(i;Ho) 

as the log likelihood ratio for each observation i, Vuong's statistic, V = (L\ — 

LQ)I'(y/NStd(li)), follows a standard normal distribution if the hypothesis Ho and 

Hi are equivalent. If V > 1.96 then HQ of normal distribution is rejected in fa­

vor of Hi of the model under 5% significance level. The Vuong statistics for the 

model (Hi) against Ho that data follows either Gaussian, Gamma, or Exponential 

distributions are 30.393. 21.785. and 28.140 respectively rejecting Ho in favor of the 

model. 

Recall that fii corresponds to the Poisson mean of the number of investors 

deciding to dump the stock when no one else is selling and /j, quantifies that degree 
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of herding which leads to attenuation of the tail of the distribution of a(j, k). \x\ = 

2.068 indicates approximately 2 managers within each group would have sold the 

stock even if no one else was selling, fi = 0.570 indicates that on average during the 

2005:Q2 through 2006:Q1 time period another fund manager would have chosen to 

follow the actions of these initial "random" sellers with a probability of 0.57. 

3.3.5 Exponential Decay and the Rise of \i Over Time 

Figure 3.10 through Figure 3.15 show quarterly semi-log probability plots of em­

pirical a(j, k) against the data simulated from the model and the two benchmark 

alternatives, Poisson and normal distributions. The data was simulated with distri­

bution parameters first obtained via MLE using empirical a(j,k).s A concave line 

corresponds to an accelerating probability decay in the tail characteristic of a Gaus­

sian distribution while a straight line indicates decelerating exponential decay. The 

model of stochastic herding predicts that due to choice correlations the distribution 

of the number of institutional investment managers liquidating a particular stock 

will exhibit exponential decay because of the persistence of outliers due to choice 

correlation. 

Figure 3.10 through Figure 3.15 [about here] 

During the early quarters (Figure 3.10), Poisson captures the probability 

decay close to the mean however misses the exponential decay in the tail. A normal 

8Note that for 2003:Q4, 2004:Q1, 2004:Q4 we show a second plot with estimation dropping one 
outlier. 
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distribution approximates the probability decline fairly well in 2003:Q2 when the 

probability mass in the empirical data follows a concave curve characteristic of the 

Gaussian decay. The fit of the model improves in 2003:Q4 and 2004:Q1, these are 

two quarters when mean and maximum of a(j, k) temporarily increased (see Table 

3.4). However, in both cases the empirical distribution exhibits bimodality and in 

both cases higher mean appears to have been driven by one outlier. It is nonetheless 

noteworthy that the tail of the distribution exhibits a rightward shift, as if pulled 

by the outliers but never lining up perfectly behind them. 

The fit of the model improves substantially during 2006:Q1 (Figure 3.13), 

one quarter before the onset of the sell-off phase. The distribution of empirical 

a(j, k) exhibits exponential decay, moreover the data points tend to from a more 

continuous line indicating higher instances of sell outs at intermediate values. 

The following four quarters (2006:Q2 through 2007:Q1) the probability 

mass of a(j, k) is concentrated around values an order of magnitude higher then in 

the previous period, indicating massive institutional dumping of stocks. Moreover, a 

more dense empirical plot indicates much greater incidence of a(j, k) across all stock-

investor type groups. However, during this period the distribution of a(j, k) also 

exhibits bimodality, likely driven by heterogeneity in group sizes. This is because, 

as indicated in the discussion of Figure 3.7 in previous section, when controlling for 

group size via a(j, k)/N(j, k), the bimodality disappears in favor of Gaussian decay 

around the mean close to 1. 
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After the sellout period the herding signature virtually vanishes - the em­

pirical distribution of a(j, k) is similar to the earlier periods of 2003 and 2004, with 

bimodal features (in 2007:Q2 and 2007:Q4 in particular) and the decay in the prob­

ability mass region approximated fairly well by a normal distribution. 

Table 3.10 [about here] 

Table 3.10 supplements graphical simulation analysis with quarterly MLE 

parameter estimates for the model. The last column shows the results of a non­

nested goodness of fit test based on Vuong's statistic. If V > 1.96 then Ho of normal 

distribution is rejected in favor of H\ of the model under 5% significance level. The 

goodness of fit test confirms the inference made based on semilog probability plots 

and shows that the empirical distribution reject normal decay in favor of the model 

during all quarters except for 2006:Q2 through 2007:Q1. During the quarters when 

the model captures the empirical distribution the Poisson mean /j,\ is approximately 

2 indicating that on average two investors in each stock-investor-type group, N(j, k), 

chose to liquidated at random in the beginning of the tatonnement process. On the 

other hand, the estimates for fj,, the degree of endogenous feedback, are rising from 

0.347 in 2003:Q1 to 0.638 in 2006:Q1 indicating intensifying degree of herding up 

until sell-out phase. 

The trend increase in fi, which accelerated during the last year before the 

sell-out phase, is shown in Figure 3.8. The estimate of /i in 2006:Q1 indicates 

that a random decision to dump the stock by an investment manager would have 
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induced another investor to follow her action with a 64% probability. The rise of fi 

over time as the run-up on S&P 500 stocks continued is consistent with weakening 

fundamental anchors and a rising importance of market-timing considerations that 

make the system succeptible to herding. During the sell-out period the empirical 

data favors an alternate distribution, as seen by large negative Vuong's statistics. 

Note however that during the 2006:Q2 through 2007:Q1 period the estimates for \i 

range between 0.931 and 0.941 indicating that, although misspecified, the likelihood 

of a power-law with exponential truncation is maximized for \i close to 1, where 

H = 1 corresponds to the criticality at which exponential truncation vanished in 

favor of pure power law (consistent with semilog plots for this four quarter period 

shown in Figure 3.14). Finally, after the sellouts have subsided, exponential decay 

emerges once again but the estimates of /i remain below the 2006:Q1 level. 

Overall, the rise of \x over time indicates that institutional investment man­

ager actions increasingly exhibited contagious behavior intensifying the branching 

process until the sell-out phase. During the four quarters in 2003 the estimates 

of \i rise moderately after which point /i is approximately stationary until 2005:Q3, 

when /i begins to rise again until a sudden jump to the neighborhood of 1. This sug­

gests that the population dynamics of fund manager behavior that we view as a the 

branching process with intensity \i transitioned from subcritical phase of /i < 1 to 

a critical phase of [i = 1 between 2006:Q1 and 2006:Q2. If in fact institutional fund 

managers learn about market liquidity, 0, by accumulating private information and 

observing aggregate action, then over time Bayesian learning ensures that beliefs 
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about 9 converge and the triggering action eventually occurs with probability I9 . 

This is because as private information, which is jointly normally distributed with the 

true 9 hence informative, accumulates over time the average belief decreases causing 

some managers to liquidate even if no one else is liquidating. Their actions affect 

the threshold of others triggering a chain of liquidations. If sufficient amount of pri­

vate information has been accumulated over time such that the average belief is low 

enough, then the chain reaction becomes "explosive" in the hence of self-organized 

criticality put forth by Bak et al. (1988). In Bak's sandpile model the distribution 

of the avalanche size depends on the slope of the sandpile. Our analog of the slope 

of the sandpile is the inverse of the average belief. At the criticality of /i = 1 the 

distribution in Equation 3.22 becomes a pure power law and the branching process 

becomes a martingale, that is the conditional expectation then is that all managers 

liquidate next period if all are liquidating in the current period. Hence, then mean 

of a(j,k)/N(j,k) approaching 1 in Table 3.5 sustained for four quarters and the 

symmetric distribution in the positive extreme of the histogram in the right panel 

Figure 3.5. 

3.4 Conclusion 

This paper has demonstrated that the behavior of institutional investors around the 

downturn of the U.S. equity markets in 2007 is consistent with stochastic herding in 

9See Nirei (2006a) for a more general dynamic extension to information aggregation problem in 
financial markets 
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attempts to time the market. We considered a model of large number of institutional 

investment managers who simultaneously decide whether to remain invested in an 

assets or liquidate their positions. Each fund manager receives imperfect informa­

tion about the market's ability to supply liquidity and chooses whether or not to sell 

the security based on her private information as well as the actions of others. Be­

cause of feedback effects the equilibrium is stochastic and the "aggregate action" is 

characterized by a distribution exhibiting exponential decay embedding occasional 

"explosive" sell-outs. We can obtained such "fat tail" distributions without im­

posing major parametric assumptions on exogenous variables. It suffices that the 

signals about the true state are informative in the sense of satisfying the MLRP. For 

instance, as in this paper, the information and the true state can follow a bivariate 

normal distribution. 

We examined highly disaggregated institutional ownership data of publicly 

traded stocks from 13F filings with SEC to find that stochastic herding explains the 

underlying data generating mechanism. Moreover, consistent with market-timing 

considerations, the distribution parameter measuring the degree of herding rose 

sharply immediately prior the sell-out phase that began in earnest in 2006 :Q2. The 

transition to the sell-out itself is consistent with transition from subcritical to su­

percritical phase as the system swung sharply to a new equilibrium with all agents 

coordinating on the same action. One advantage of developing this empirical ap­

proach is its potential, given the right data, to quantify "hidden tail risk" and 

provide advance warning of an impeding instability by identifying a system with 
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high degree of choice interdependence based on the distribution of aggregate ac­

tion. These considerations should be important for both regulatory policy and risk 

management. 
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Table 3.1: Number of managers in S&P 500 stocks, by institution type 

Quarter Banks Insurance Companies Investment Companies Investment Advisors Pension & Endowment Funds Total 
Number % tot Number % tot Number % tot Number % tot Number % tot Number 

2003ql 
2003q2 
2003q3 
2003q4 
2004ql 
2004q2 
2004q3 
2004q4 
2005ql 
2005q2 
2005q3 
2005q4 
2006ql 
2006q2 
2006q3 
2006q4 
2007ql 
2007q2 
2007q3 
2007q4 
2008ql 

11 
11 
11 
10 
10 
10 
9 
10 
9 
8 
7 
8 
9 
10 
9 
9 
8 
10 
9 
9 
9 

0 92 
0 87 
0 88 
101 
1 16 
0 99 
1 11 
1 2 
1 16 
108 
1 11 
0 96 
106 
1 16 
0 94 
1 12 
0 99 
0 97 
0 88 
0 96 
107 

18 
19 
18 
21 
20 
20 
20 
20 
20 
20 
19 
19 
19 
18 
18 
17 
17 
18 
18 
18 
19 

1 8 
198 
188 
1 71 
182 
1 81 
1 8 
1 68 
165 
1 64 
183 
162 
161 
1 59 
1 52 
14 
1 39 
1 38 
1 41 
134 
133 

128 
130 
132 
121 
129 
133 
125 
117 
121 
119 
114 
114 
111 
106 
103 
102 
102 
101 
97 
97 
96 

6 39 
6 42 
6 63 
5 95 
6 49 
13 29 
12 59 
1144 
11 76 
11 22 
11 35 
10 96 
10 27 
99 
9 66 
9 43 
9 31 
8 84 
8 72 
8 34 
8 54 

135 
137 
137 
131 
133 
136 
136 
166 
169 
170 
167 
187 
189 
204 
240 
333 
337 
384 
405 
516 
521 

14 16 
14 16 
14 3 
13 74 
13 44 
64 
6 09 
6 97 
6 87 
6 73 
6 67 
7 18 
6 65 
73 
8 57 
1198 
11 53 
13 47 
14 97 
17 54 
17 6 

1579 
1593 
1590 
1699 
1742 
1742 
1735 
1869 
1877 
1901 
1855 
1973 
2024 
2046 
2014 
2087 
2124 
2096 
2058 
2124 
2119 

76 74 
76 57 
76 31 
77 59 
77 09 
77 51 
78 41 
78 71 
78 56 
79 32 
79 04 
79 28 
80 41 
80 05 
79 3 
76 08 
76 78 
75 34 
74 01 
71 82 
7141 

1871 
1890 
1888 
1982 
2034 
2041 
2025 
2182 
2196 
2218 
2162 
2301 
2352 
2384 
2384 
2548 
2588 
2609 
2587 
2764 
2764 

Notes The data is complied from quarterly 13F filings with SEC in which institutional investment managers with over $100 million under discretionary 
management are required to report their long positions in exchange traded stocks, closed-end investment companies, equity options and warrants Source 
Spectrum database available through Thompson Financial 
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Table 3.2: Value of S&P 500 stocks; by institution type 

Quarter 

2003ql 

2003q2 

2003q3 

2003q4 

2004ql 

2004q2 

2004q3 

2004q4 

2005ql 

2005q2 

2005q3 

2005q4 

2006ql 

2006q2 

2006q3 

2006q4 

2007ql 

2007q2 

2007q3 

2007q4 

2008ql 

$ Mil < 

95,900 

108,000 

111,000 

76,000 

130,000 

129,000 

126,000 

137,000 

131,000 

130,000 

124,000 

130,000 

137,000 

144,000 

117,000 

159,000 

155,000 

160,000 

158,000 

165,000 

141,000 

Banks 

% Tot 

0 92 

0 87 

0 88 

1 71 

1 16 

0 99 

1 11 

1 2 

1 16 

1 08 

1 11 

0 96 

106 

1 16 

0 94 

1 12 

0 99 

0 97 

0 88 

0 96 

107 

%Mkt 

1 20 

1 19 

1 21 

0 75 

1 25 

1 19 

1 17 

1 17 

1 21 

1 19 
1 11 

1 14 

1 15 

1 17 

0 91 

1 18 

1 14 

1 13 

1 11 

1 22 

1 18 

Insur Comp 

$ Mil % Tot % Mkt 

209,000 

235,000 

258,000 

128,000 

231,000 

220,000 

222,000 

235,000 

231,000 

231,000 

242,000 

246,000 

262,000 

264,000 

283,000 

297,000 

303,000 

369,000 

371,000 

351,000 

302,000 

1 8 

198 

1 88 

1 01 

1 82 

181 

1 8 

168 

1 65 

1 64 

1 83 

1 62 

161 

159 

1 52 

1 4 

139 

1 38 

141 

134 

1 33 

2 61 

2 58 

2 82 

1 27 

2 22 

2 04 

2 06 

2 01 

2 14 

2 12 

2 16 

2 16 

2 20 

2 15 

2 19 

2 20 

2 23 

2 60 

2 61 

2 60 

2 52 

Invest Comp 

$ Mil ' 

466,000 

541,000 

588,000 

207,000 

648,000 

648,000 

642,000 

737,000 

716,000 

718,000 

694,000 

724,000 

752,000 

778,000 

962,000 

1,430,000 

1,260,000 

1,300,000 

1,700,000 

1,350,000 

1,200,000 

% Tot % Mkt 

6 39 

6 42 

6 63 

5 95 

6 49 

64 

6 09 

6 97 

6 87 

6 73 
6 67 

7 18 

6 71 

7 28 

8 56 

11 96 

9 31 

8 84 

8 72 

8 34 

8 54 

5 81 

5 94 

6 43 

2 05 

6 23 

6 00 

5 94 

0 00 

6 63 

6 59 

6 20 

6 35 

6 32 

6 33 

7 46 

10 59 

9 26 

9 15 

11 97 

10 00 

10 00 

Invest 

$ Mil ' 

95,900 

1,080,000 

1,090,000 

1,280,000 

1,270,000 

1,260,000 

1,200,000 

1,270,000 

1,200,000 

1,160,000 

1,200,000 

1,220,000 

1,150,000 

1,170,000 

1,210,000 

1,490,000 

1,440,000 

1,860,000 

2,080,000 

2,130,000 

1,870,000 

Advisors 

% Tot % Mkt 

14 16 

14 16 

14 3 

13 74 

13 44 

13 29 

12 59 

1144 

11 76 

11 22 

1135 

10 96 

10 27 

99 

9 66 

9 43 

11 55 

13 47 

14 9 

17 54 

17 64 

1 20 

1186 

11 93 

12 67 

12 21 

11 67 

11 11 

10 85 

11 11 

10 64 

10 71 

10 70 

9 66 

9 51 

9 38 

1104 

10 59 

13 10 

14 65 

15 78 

15 58 

Pension & Endowment Funds 

$ Mil ' 

3,350,000 

3,860,000 

3,970,000 

4,370,000 

4,700,000 

4,700,000 

4,740,000 

5,220,000 

4,780,000 

4,920,000 

5,090,000 

5,360,000 

5,680,000 

5,860,000 

6,020,000 

5,820,000 

6,030,000 

6,120,000 

5,750,000 

5,330,000 

4,710,000 

%Tot 

76 74 

76 57 

76 31 

77 59 

77 09 

77 51 

78 41 

78 71 

78 56 

79 32 

79 04 

79 28 

80 36 

80 07 

79 32 

76 09 

76 76 

75 34 

74 01 

71 82 

71 41 

%Mkt 

41 77 

42 37 

43 44 

43 27 

45 19 

43 52 

43 89 

44 62 

44 26 

45 14 

45 45 

47 02 

47 73 

47 64 

46 67 

43 11 

44 34 

43 10 

40 49 

39 48 

39 25 

Total 

$ Mil < 

8,020,000 

9,110,000 

9,140,000 

10,100,000 

10,400,000 

10,800,000 

10,800,000 

11,700,000 

10,800,000 

10,900,000 

11,200,000 

11,400,000 

11,900,000 

12,300,000 

12,900,000 

13,500,000 

13,600,000 

14,200,000 

14,200,000 

13,500,000 

12,000,000 

Vo Mkt 

52 58 

63 93 

65 83 

60 01 

67 11 

64 42 

64 17 

58 65 

65 35 

65 68 

65 63 

67 37 

67 07 

66 80 

66 60 

68 12 

67 56 

69 08 

70 84 

69 08 

68 53 

Notes The data is complied from quarterly 13F filings with SEC in which institutional investment managers with over $100 million under discretionary 
management are required to report their long positions in exchange traded stocks, closed-end investment companies, equity options and warrants Source 
Spectrum database available through Thompson Financial 
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Table 3.3: Descriptive Statistics: N(j, k) 

Quarter Obs. Mean Std. Dev. Skewness Kurtosis Min. Max. 

2003ql 

2003q2 

2003q3 

2003q4 

2004ql 

2004q2 

2004q3 

2004q4 

2005ql 

2005q2 

2005q3 

2005q4 

2006ql 

2006q2 

2006q3 

2006q4 

2007ql 

2007q2 

2007q3 

2007q4 

2008ql 

1842 

1882 

1856 

1846 

1878 

1878 

1859 

1833 

1546 

1537 

1562 

1535 

1543 

1792 

1788 

1749 

1720 

1741 

1738 

1689 

1697 

114.292 

114.127 

115.715 

118.792 

121.276 

122.108 

119.288 

125.724 

136.618 

138.249 

133.021 

140.610 

142.454 

133.449 

133.964 

140.074 

143.072 

146.221 

141.282 

148.259 

144.060 

149.127 

150.874 

150.238 

157.012 

159.835 

161.616 

160.445 

168.197 

179.986 

184.302 

179.158 

186.096 

191.480 

182.378 

180.705 

177.505 

181.797 

181.594 

174.153 

175.767 

171.584 

2.559 

2.614 

2.561 

2.542 

2.527 

2.501 

2.510 

2.471 

2.329 

2.321 

2.333 

2.316 

2.259 

2.403 

2.454 

2.465 

2.401 

2.361 

2.425 

2.369 

2.405 

11.377 

11.820 

11.425 

11.266 

11.153 

10.956 

11.013 

10.654 

9.530 

9.460 

9.483 

9.375 

8.979 

10.022 

10.339 

10.487 

10.020 

9.723 

10.185 

9.921 

10.210 

10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 

1046 

1105 

1069 

1130 

1157 

1150 

1123 

1145 

1161 

1187 

1141 

1170 

1195 

1205 

1199 

1197 

1220 

1222 

1179 

1179 

1197 

Notes: The Table shows the summary statistics for stock-investor-type groups, 
N(j, k), where j indicates an S&P500 stock and k indicates institutional investor 
type. Only groups with 10 traders or more are included in the sample. 
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Table 3.4: Descriptive Statistics: a(j,k) 

Quarter Obs. Mean Std. Dev. Skewness Kurtosis Min. Max. 

2003ql 
2003q2 
2003q3 
2003q4 
2004ql 
2004q2 
2004q3 
2004q4 
2005ql 
20f)5q2 
2005q3 
2005q4 
2006ql 

2PB3 
I f f 

2 « 4 

2{0fl 
2007q2 
2007q3 
2007q4 
2008ql 

1842 
1882 
1856 
1846 
1878 
1878 
1859 
1833 
1546 
1537 
1562 

4535-

1749 
1720; 
1741' 
1738 
1689 
1697 

2.025 
2.001 
2.199 
2.299 
2.790 
2.458 
2.257 
2.241 
2.983 
2.688 
2.745 
3.731 
4.047 * 
p.974 

.114 
1&678 

V # 8 0 4 
3.036 
3.659 
3.117 
3.727 

3.562 
2.022 
1.871 

26 994 
32.145 
3 523 
3 511 
10.326 
4 128 
3.362 
3.374 

, 2.503 
4.320 
2.647-
2.650 
2.686 
2.664 
77707 
3.010 
3.761 
2.734 

31303 
7.915 
6.451 

969.256 
1240.280 
22.887 
22.647 

202 711 
37.587 
20.606 
20.452-
l l . l S l ^ 
42.251 

- i i § 4 
•' ltp:9 
_12 .«b 
fpl.SJO 
* 123.917 

24.035 
30.523 
18.262 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

44 
24 
23 

252 
347 
40 
37 
123 
57 
43 
42 
47 
105 ,\ 

m 
10{ 

At 
112 
63 
57 
55 

L™ 

Notes: The table shows summary statistics of a(j, k). Each quarter a(j, k) out of 
N(j, k) institutions m each group liquidate their holdings. Institutional managers 
dumping more than 80% of their holdings are counted into a(j, k). 
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Table 3.5: Descriptive Statistics: a(j,k)/N(j,k) 

Quarter Obs. Mean Std. Dev. Skewness Kurtosis Min. Max. 

2003ql 
2003q2 
2003q3 
2003q4 
2004ql 
2004q2 
2004q3 
2004q4 
2005ql 

^005^2 -
^005q3 
"2005q4^x 

2006ql 
^006q2 . 
| 006q3 : 

!)06q4 
|^007ql 
^2007q2 
2007q3 
2007q4 
2008ql 

# 

1203 
1090 
985 
1088 
1425 
1222 
1133 
961 
1308 

1088 

0.034 
0.034 
0.032 
0.038 
0.040 
0.039 
0.038 
0.033 
0.040 
0.034 
0.035 
0.041 

0.031 
0.027 
0.030 
0.050 
0.046 
0.035 
0.033 
0.044 
0.032 
0.026 
0.030 
0.028 
0.028x 

$i>94 

1180 

1253 

1110 

1280 

0.032 

0.040 

0.030 

0.038 

0.027 

0.029 

0.022 

0.026 

2.800 

2.059 

9.969 

8.490 

8.971 

2.469 

2.518 

8.801 

2.004 

2.\175 

^2.711 

2.353 

1.999 

-1.106-

-1.133 

-2.068 

-3.081 

2.807 

1.766 

1.835 

1.952 

15.119 

8.368 

182.945 

113.689 

134.281 

13.055 

14.814 

119.914 

8.524 

10.577 

14.756 

13.414 

-8.378 

7.453 

9-861 il| 

J.3.761 : 

28.491 j 

13.823 

6.964 

7.409 

8.835 

1 

0.003 

0.003 

0 004 

0.001 

0.003 

0.002 

0.003 

0 002 

0.002 

0.003 

0.002 

0.003 

0.004 

iW WmW 
- (sfll91» 

sifll 
0.003 
0.002 
0.004 
0.004 

0.294 
0.190 
0.636 
0.811 
0.820 
0.364 
0.357 
0.774 
0.267 
0.222 
0.3Q4 

, 0.200 
fi.ooo| 
mx 

f.oooj 
0.229 
0.208 
0.143 
0.231 

Notes: The table shows quarterly summary statistics for the fraction of insitu-
tional investment managers dumping their stock within in stock-investory type 
group (Q(J, k) = a(j, k)/N(j, k)). 

Table 3.6: Kolmogorov-Smirnov test. Poisson distribution of a(j, k) over the entire 
sample, 2003:Q1 - 2008:Ql 

Variable 

a(j,k) 

Obs. 

38.353 

Test Result 

Reject 

p-value 

0.000 

Test Stat. 

0.769 

Critical Value 

0.008 

Notes: The table shows the results of Kolmogorov-Smirnov goodness of fit test 
for Poisson distribution to a(j, k). 
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Table 3.7: Test for normality of a(j, k) over the entire sample, 2003:Ql - 2008:Q1 

Variable 

a(j, k) 

Obs. 

38,353 

Mean 

22.745 

Std. Dev. 

79.264 

Skewness 

6.368 

Kurtosis 

54.868 

Notes: The table shows the estimates of the moments of a(j,k), pointing at a 
highly non-normal distribution. 

Table 3.8: Distribution parameter estimates for a(j, k) for the entire sample, 2003:Q1 
- 2008:Q1. 

Variable Obs. Mi M Log Likelihood 

a(j, k) 38,353 2.058 
(0.006) 

0.938 
(0.001) 

99728.410 

Notes: The probability density for the hypothesized distribution is Pr(X = x) — 

Table 3.9: Distribution parameter estimates for a(j,k) for the 2005:Q2 - 2006:Q1 
subsample. 

Distribution of a(j, k) 
Model Benchmark Distributions 

Borel-Poisson Trunc. Normal Gamma Exponential 

ML estimates 

Log Likelihood 

Vuong's statistic 

Obs. 

IH 2.058 
(0.029) 

H 0.570 
(0.007) 

11148.789 

Hi 

4,265 

mean -97.461 
(7.152) 

a 20.000 
(0.665) 

10040.186 

30.393 

a 1.103 
(0.021) 

/3 4.335 
(0.103) 

10925.596 

21.785 

P 4.781 
(0.072) 

10938.238 

28.140 

Notes: The probability density for the hypothesized distribution is Pr(X = x) 
ine-^+^lux + in)x-l/x\ 
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Table 3.10: Quarterly distribution parameter estimates for a(j,k). 

Quarter 

2003ql 
2003q2 
2003q3 
2003q4 
2004ql 
2004q2 
2004q3 
2004q4 
2005ql 
2005q2 
2005q3 
2005q4 

-2006ql 

I3f0j|q€ 

2007q2 
2007q3 
2007q4 
2008ql 

Obs. 

1203 
1090 
985 
1088 
1425 
1222 
1133 
1833 
1308 
947 

1088 

121$ 
A1012 

m 

2.023 
2.164 
2.368 
1.963 
1.880 
2.046 
2.103 
2.087 
1.984 
2.155 
1.938 
2.022 
2.234 

s.e. 

(0.053) 
(0.060) 
(0.069) 
(0.054) 
(0.045) 
(0.053) 
(0.057) 
(0.061) 
(0.050) 
(0.064}, 
(0.0545 
(0.054) 
fo.064) 

V 

0.347 
0.374 
0.429 
0.497 
0.489 
0.458 
0.432 
0.512 
0.437 
0.506 

.0.508 
0*570^ 
Q438j§ 

I'iiloi^ioa^M^I^ 94ii 

|\^K||24«149«^« 
1180 
1253 
1110 
1280 

2.181 
2.606 
2.360 
2.619 

(0.057) 
(0.065) 
(0.064) 
(0.065) 

0.513 
0.486 
0.503 
0.470 

s.e. 

(0.015) 
(0.016) 
(0.016) 
(0.014) 
(0.012) 
(0.014) 
(0.014) 
(0.014) 
(0.013) 
(0.015) 
(0.QU% 
(0.012ft 
(0.012) 

lit) 
»°02) 
^002) 
(0.013) 
(0.013) 
(0.013) 
(0.013) 

Log Likelihood 

2610.493 
2479.326 
2412.327 
2614.313 
3343.738 
2905.715 
2661.898 
2392.407 
3024.613 
2384.011 
26"44.548\ 
3170.367 ^ 
2891.608 
f̂i(iO.(W6 

DsOii. L10 
WiKi.nso 

299L997 
3291.732 
2867.704 
3323.552 

Vuong's Sta 

31.048 
28.628 
25.413 
3.588 

-
28.048 
28.686 
10.572 
23.576 
22.919 
24.945 
25.764 
13.442 

-.• -26$B2(. 
-27|F76 
-26§I72 
-25&12 
15.100 
25.806 
24.548 
25.452 

Notes: The table reports quarterly MLE parameter estimates for the probabil­
ity density of the hypothesized distribution. Pr(X = x) = /j,ie^^x+fJ,1\fj,x + 

79 



www.manaraa.com

V ^ - f \ / 0 3 V ' ^ r V 0 5 V *» f\* fb V K O/ «"o fet ^ n , i>j fti * . 

- Number of shares owned by pension and endowment funds 
- S&P500 Index 

Figure 3.1: Number of shares (in millions) of S&P 500 stocks held by pension and 
endowment funds and the S&P 500 index. 
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Figure 3.2: Left: threshold function x(a); Right: conditional mean /x(a) 
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Figure 3.3: Histogram of a for 0 < a < 140 
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Figure 3.4: Histogram of a for 0 < a < 140 
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Figure 3.5: 2003:Q1 - 2008:Q1 (38,353 observations); Left histogram of empirical 
a(j, k). Right histogram of (a(j, k) — b(j, k))/N(j, k). 
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Figure 3.6: 2005:Q2 - 2006:Q1: Left histogram of empirical a(j,k). Right semi-log 
probability plot of empirical a(j, k) and the fitted model (red). 
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Figure 3.7: Semi-Log Probability Plots of a(j, k)/N(j, k) 
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Figure 3.8: Herding - quarterly estimates of distribution parameter /z, which mea­
sures the probability of a "chain reaction" in response to a random liquidation by 
an investment manager. 
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Figure 3.9: Plot of Pr(X = x) = \x\e ^X+M,1\IJ,X +/J,I)X 1/x\. Parameters estimated 
using 2005:Q2-2006:Q1 data on institutional investor holdings of S&P 500 stocks: 
/ii = 2.060, \x = 0.547. 
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Figure 3.10: Semilog probability plot of a(j,k) and comparison to data simulated 
using the model and the two alternatives, Normal and Poisson. 
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Figure 3.12: Semilog probability plot of a(j, k) and comparison to data simulated 
using the model and the two alternatives, Normal and Poisson. 

87 



www.manaraa.com

X'HI^ 

i \ 
i \ 

x data 

Normal 

Poisson 

Model 

V-

2005 :Q4 

A i " l h 

1 »*i» 

1 ^ ^ T k 

1 ^ V 1 \ 
1 \ 
1 \ \ 

* data 

Normal 
— — -Poisson 

Model 

• 

^ : 
0 5 10 15 20 25 3D 35 40 

Number Sellers, >80% of Portfolio 
0 5 10 15 20 25 30 35 40 45 

Number Sellers. > f f l% of Portfolio 

ts 

\ \ *• 

1 \ 

' \ 
i \ 

1 

\ * 

1 « data 

Normal 
— — -Poisson ' 

| Model 

• 

fir*. 
v: \ 

^% 
i 

i 

i 

i 

\ 
\ 
\ 
\ 

N 
I 
1 
1 
s 

N 

2006:Q1 

"5X 

* 
- -

data 

— Normal 

-Poisson • 

-Mode l 

*-̂  

0 10 20 30 40 50 GO 70 80 90 100 
Number Sellers, >9D% of Portfolio 

0 10 20 30 40 50 
Number Sellers, >80% of Portfolio 

Figure 3.13: Semilog probability plot of a(j, k) and comparison to data simulated 
using the model and the two alternatives, Normal and Poisson. 



www.manaraa.com

V *\ 
^r^^ \ 

i ^ ^ ^ . 

2006 Q2 

Normal 
Poisson 

Model(mu<1) 

Model(mu=1) . 

* J S . ^ — _ 

V i 
" " " N X 

1 
1 i . 

^ * t * 

\ 
V 

\ 

* data 

Normal 

— — Poisson 
Model(mu<1j 

Model(mu=1) : 

V—: 
\ * X . 1 
\ \ \ \ \ : 

D 100 200 300 400 5D0 GOO 700 600 900 1000 1100 
Number Sellers >8D% of Portfolio 

200 400 600 800 1000 
Number Sellers >80% of Portfolio 

V l V X 

T V \ ^ t \ 

i ^ * i i . 

i 

l | 

2006 Q4 

\ 
1 

î 
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Chapter 4 

Speculative Dynamics and Currency 

Crash Risk 

4.1 Introduction 

Foreign exchange returns of high (low) yield currencies tend to exhibit negative (pos­

itive) skewness - long duration of runs interrupted by abrupt crashes. Such apparent 

violation of the efficient market hypothesis combined with the loose fundamental 

anchoring of foreign exchange rates, also known as the exchange rate disconnect 

puzzle first documented by Mussa (1986) and Flood and Rose (1993), suggests that 

strategic behavior by traders can play an important role in exchange rate dynamics. 

Particularly, in a situation where traders may have private information related to 

future payoffs of a foreign investment, their individual actions may trigger a cascade 

of similar actions by other traders. Several features of carry trade make it especially 
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susceptible to such a mechanism of chain reaction through information revelation. 

Carry trade is a strategy in which an investor finances a long position 

in a high yield currency by borrowing in a low yield currency betting that the 

exchange rate will not change so as to offset the profits made on the interest rate 

differential.1 Since central banks set short-term interest rates with domestic inflation 

considerations in mind, it allows carry traders to lock-in a profit from the interest 

rate differential, but the key uncertainty of an adverse exchange rate swing remains. 

In other words, carry traders knowingly expose themselves to foreign exchange rate 

risk. The profitability of their investment strategy is contingent on the violation 

of the uncovered interest parity (UIP) which is an ex-ante no-arbitrage condition 

predicting that excess returns from holding high interest rate currency must be 

eliminated through an expected depreciation of that currency. Plantin and Shin 

(2010) refer to the instant when exchange rate of high yield currency depreciatiates 

back to a commonly known fundamental level as "the day of reckoning". 

We study the implications of this key "day of reckoning" uncertainty for 

strategic behavior of carry traders, and the consequences of their actions for foreign 

exchange volatility. Since all carry traders face a common risk, they learn about 

the likelihood of an adverse foreign exchange rate swing, not only from their private 

information, but also from the actions of others. This leads to strategic comple­

mentarity in their actions to engage in carry trade. Strategic complementarity is an 

important result since, as shown in a dynamic coordination game by Plantin and 

1Burnside et al. (2007) and Hochradl and Wagner (2010) document persistent excess returns to 
carry trade strategies. 
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Shin (2010), it makes foreign exchange speculation destabilizing when coupled with 

the notion of "the day of reckoning." Plantin and Shin introduce strategic comple­

mentarity by the means of positive funding externality - the additional assumption 

that carry traders reduce funding costs for each other by exacerbating UIP viola­

tion when piling into a high yield currency. In contrast, we demonstrate that the 

aggregate uncertainty about the probability of the crash is by itself sufficient to 

make carry traders' actions strategic complements, leading to runs on the high yield 

currency punctuated by endogenous episodes of "explosive" carry unwinding. Fur­

thermore, the collective unwinding in this environment is stochastic since it turns 

out that in equilibrium each carry trader assigns greater weight to the actions of 

others rather than her own private information only with a certain probability. The 

stochastic equilibrium outcome of our model takes from the stochastic herding ap­

proach of Nirei (2006 b. 2008). This gives a result similar to the stochastic bifurcation 

equilibrium dynamics of Plantin and Shin (2010), whereby a small smooth change 

to a parameter value can lead the system to instantly swing to a new equilibrium.2 

However, we obtain this results in a simpler setting with the underlying mechanism 

being a chain reaction through information revelation about currency crash risk. 

Leverage in our model plays a secondary role, only exacerbating the pre-existing 

dynamics. The impact of leverage is highly non-linear, and suggests that there may 

exist an optimal percentage margin requirement on speculative positions which is a 

function of the interest rate differential between high and low yielding currencies. 

2See Bass and Burdzy (1999) for a comprehensive treatment of stochastic bifurcation processes 
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The main empirical implication of stochastic herding in carry trade relates 

to the distribution of rare events in foreign exchange. Whereas the central limit the­

orem characterizes an outcome of a simple information aggregation process, choice 

correlations lead to fat tail effects. In particular, the equilibrium fraction of carry 

traders that herd on the same action is described by a probability distribution 

that exhibits a power decay with exponential truncation. Thus, the mechanism of 

stochastic herding may explain recent findings in option pricing literature that an 

exponentially dampened power-law provides a better approximation to rare events 

in foreign exchange returns than the traditional Merton's compound Poisson normal 

jump process (see Wu (2006) and Bakshi et al. (2008)). Furthermore, since an expo­

nentially dampened power-law in the distribution of rare events in foreign exchange 

can be observed even before the "explosive" unwinding takes place it potentially 

allows us to quantify what Rajan (2006) has dubbed the "hidden tail risk."3 

We test the goodness of fit of the distribution derived from the model to 

the realized volatility jumps in JPY/USD foreign exchange rate. The Japanese yen 

in particular has served as a funding currency in carry trade because of a prolonged 

"zero interest rate" policy of the Bank of Japan. Brunnermeier et al. (2009) find that 

yen has exhibited the highest degree of skewness among developed countries' curren­

cies, and attribute this to large periodic yen appreciations caused by the unwinding 

of carry trade. Leptokurtic features arise if standard Brownian motion in the evolu-

3See for instance Jansen and de Vries (1991) and Longin (1996) who suggest that price fluctua­
tions in normal times and rare market crashes are caused by the same mechanisms. Also, Morris and 
Shin (1999) argue that choice interdependence among traders must be explicitly incorporated into 
the estimates of "value at risk" and call for greater attention to the actions of market participants. 
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tion of financial returns is punctuated by periodic jumps. We examine daily jumps in 

the JPY/USD exchange rate extracted using a non-parametric method of bi-power 

variation following Barndorff-Nielsen (2004) and Barndorff-Nielsen and Shephard 

(2006). This method makes use of high-frequency data (five minute intervals) to 

take out intraday noise and isolate daily returns that evolved discontirmously (are 

inconsistent with Gaussian volatility component). We focus on time period from 

January 1. 1999 through February 1, 2007, thus the 1998 and 2008 crashes are just 

outside of our sample. 

We find that positive and negative jumps in the JPY/USD exchange rate 

exhibit asymmetries consistent with carry trade: higher likelihood of large discrete 

yen appreciations coupled with serial correlation and non-linear dependence in yen 

appreciation jumps indicate that large yen appreciations tend to occur over con­

secutive days and may be non-random. In contrast, yen depreciation jumps are 

best described as white noise. The asymmetries are more pronounced when there is 

greater incentive to engage in carry trade, a higher interest rate differential between 

U.S. and Japan, and when the general level of uncertainty is higher, that is higher 

level of option implied volatility index (VIX). 

Since jumps are extracted using a non-parametric method it allows for 

hypothesis testing regarding the underlying distribution. We find that for yen ap­

preciation jumps a compound Poisson normal jump process, which serves as a good 

approximation if jumps are independent of each other, is strongly rejected in favor 

an exponentially dampened power-law. which is an outcome of stochastic herding 
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by carry traders chasing information about the "crash risk." Simulation results with 

parameters estimated from the data confirm that the underlying data generating 

process is different for negative and positive jumps, with negative jumps subject to 

more extreme fluctuations. The contrast between simulation results of yen appreci­

ation (negative) and yen depreciation (positive) jumps clearly captures the origins 

of the negative skewness of JPY/USD returns. 

Finally, parametric restrictions from the model allow us to identify eco­

nomic factors that lead to extreme volatility by intensifying the herd effect. In the 

analysis of subsamples we find that the key distribution parameter that captures 

the intensity of herding is higher during times of greater interest rate differential 

and higher values of VIX. Fitting the model in reduced form to the data, we find 

that higher level of speculative futures positions increases the "tail risk" directly, 

while lower margin requirements and higher option implied risk premia raise the 

likelihood of sharp yen appreciation only jointly with an accumulated carry position 

in the market. The impact of the volume of speculative futures on the "tail risk" 

is particularly robust, corroborating the key hypothesis that carry trade consider­

ations play a destabilizing role in foreign exchange markets, even in periods not 

punctuated by "extreme crashes," such as the LTCM or the subprime episodes. 

The study is organized as follows. Section 4.2 empirically motivates the key 

assumption of the model that "the day of reckoning" risk plays a central role in carry 

trade. Section 4.3 presents the model. Section 4.4 tests the model and examines 

the link between JPY/USD exchange rate volatility and carry trade. Section 4.5 
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concludes. 

4.2 Evidence of the "Day of Reckoning" Fears in Yen 

Carry Trade 

The top two panel of Figure 4.1 show the JPY/USD exchange rate and the U.S.­

Japan interest rate differential from January 1. 1999 through February 1 2007. In 

strong violation of the UIP an increase in the interest rate spread corresponded with 

dollar appreciation against the yen in late 1999 through 2000 and again from 2004 

through 2007.4 For instance. Ichiue and Koyama (2008) estimate the UIP regression 

coefficient as low as -2.79 for the yen.5 In line with a "peso" type problem. Farhi 

et al. (2009) interpret UIP violations as a compensation to carry traders for bearding 

the risk of periodic currency crashes, such as sharp yen appreciation in 2008 following 

the sub-prime crisis. The third panel of Figure 4.1 shows that this rise in ex-ante 

carry trade returns was accompanied by a decrease VIX, perhaps associated with 

a global search for yields during the 2000s. Finally, the bottom panel of Figure 

4.1 shows that the dramatic rise in returns to JPY/USD carry trade in the 2004 

through 2006 period was accompanied by an increase in non-commercial yen short 

futures positions on The Chicago Mercantile Exchange (CME). which are a common 

proxy for carry trade activity (see Klitgaard and Weir (2004). Galati, Heath and 

4 An appreciation of the high yield currency is an example of the forward premium puzzle and 
the violation of the uncovered interest parity (UIP) well documented by Hansen and Hodrick (1980) 
and Engel (1996) 

5 Under rational expectations a regression of exchange rate returns on in interest rate differential 
should yield a coefficient of 1 
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McGuire (2007), Brunnermeier et al. (2009) and Cecchetti et al. (2010)). Combined, 

these trends suggest that carry trade may have been a major factor in JPY/USD 

exchange rate dynamics during our sample period. 

Figure 4.1 [about here] 

Figure 4.2 shows the relationship between the market price of risk of large 

yen appreciation (as proxied by risk reversals6) and CME net non-commercial short 

yen futures positions (percent of total open interest). Risk reversals are options 

contracts used to hedge against the risk of substantial unidirectional price movement, 

and as such their values are often treated as a proxy for market expectations about 

sharp yen appreciation.7 

Figure 4.2 [about here] 

The negative values of risk reversals depicted in Figure 4.2 indicate higher 

implied volatility on extreme yen appreciation side during the entire 2004-2006 pe­

riod. In other words, the overall market was hedging against sharp yen appreciation 

during the height of the yen carry trade. Moreover, note the close association be­

tween risk reversals and net speculative short positions in yen: when risk reversals 

become more negative (higher market expectation of sharp yen appreciation ) net 

6A risk reversal is a hedge against a large price movement in one direction constructed by a 
simultaneous purchase of deep out-of-money call and sale of deep out-of-money put option (usually 
25 or 10 delta) of the same maturity (or vise-versa). The value itself is the implied volatility for the 
call minus the implied volatility of the put. For detailed guide to risk reversals see Galati, Higgins, 
Humpage and Melick (2007). 

7Gagnon and Chaboud (2007) find that prices of deep out-of-money foreign exchange options 
indicate an overall market hedge against large yen appreciation and Farhi and Gabaix (2008) show 
that under certain conditions risk reversals contain information on currency "disaster risk premia" 
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speculative futures positions decline. In fact, in Chapter 4 it is shown that risk 

reversals Granger-cause non-commercial short positions under both 1 and 2 lag 

specifications and this effect is significant at 1 percent level. Furthermore, the effect 

is robust to controlling for the exchange rate, indicating that risk reversals con­

tain important information to carry traders on the currency risk of their positions, 

supporting the notion that "day of reckoning" considerations are central to carry 

trade. 

4.3 Model 

4.3.1 Threshold Strategy for Carry Trade Unwinding 

There are N informed risk neutral traders indexed by i = 1, 2 , . . . , TV. Each trader 

can engage in a carry trade where she goes short in yen and long in dollars. Let As > 

0 denote dollar appreciation and 8 = i — i* > 0 denote the interest rate differential 

between U.S. and Japan. Carry traders profit from UIP violation (As + S) > 0. 

The return to carry trade is stochastic because exchange rate returns, As, 

are subject to crash risk. There are two state of the world. "High" and "Low," and 

As takes from two values, ASH and ASL, depending on the realization of the state, 

where (ASH + 5) > 0 > (ASL + S). We can think of the realization of "Low" state 

as the "day of reckoning" following Duffie et al. (2002), when the dollar return to 

holding an asset snaps back to a commonly known fundamental value. 

Suppose that each trader has an existing carry position, k > 1, and one 
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new addition of funds in yen. Traders maximize E(As + 5)k' by choosing k!. Since 

traders are risk neutral the optimal position is either k! = k + 1 or k! = 0. We call 

the trader's choice k + 1 as "stay," and 0 as "exit" of the carry trade. 

Let m denote the number of exiting traders. We assume that exchange rate 

returns depend on the extent of the net outflow of funds from the carry currency. 

Thus As is a decreasing function of mk — N + m, where mk is the unwound amount 

of carry trades by exiting traders and, N — m is the increase in the carry position 

by continuing traders. Each trader submits to a market maker her supply schedule, 

namely "stay" or "exit," conditional on m. The market maker then chooses m so 

that the number of the exiting traders coincides to the chosen m. 

Each trader draws a private signal Xi, which is correlated with the state. 

The distribution of Xi is a common knowledge, where x^ is drawn from F if the true 

state is High and from G if the true state is Low. Let / and g denote the density 

functions of F and G, respectively. We assume that the odds ratio f{x)/g{x) is 

increasing in x. Namely, F and G satisfy the monotone likelihood ratio property 

(MLRP). This assumption implies that a larger value of x conveys the information 

that it is more likely that the state is High rather than Low. 

We conjecture that each trader employs a threshold strategy in which 

trader % stays in carry (&' = k + 1) if x% > x, and exits [k' = 0) otherwise. For 

a fixed m, a staying trader must be indifferent between stay or exit if she draws a 

private information at the threshold level x(m). 

Thus x(m) must satisfy the indifference condition: 
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E(As + S | m,x2 = x(m)) = 0. (4.1) 

Then. 

(AsH + S) Pr(High | xz = x(m),m) + (AsL + 8) Pr(Low | x% = x(m), m) = 0, (4.2) 

where "Pr" denotes a likelihood function. Equivalently. the threshold x is 

determined by the following equation: 

Pi(Righ\xt = x(m),m) -AsL-5 
*°g TTT^ i =7—s r = log — —. (4.3) 

Pr(Low I xt = x(m), m) ASH + o 

First, we note that: 

Pr(High | x% = x(m),m) Pr(High, x% = x(m),m) 
Pr(Low | x% = x(m), m) Pr(Low, x% = x(m),m) ' 

(4.4) 

Pr(xj = x(m) | High, m) Pr(m | High) Pr(High), 

Pr(zj = x(m) | Low, m) Pr(m | Low) Pr(Low) 

f(x(m)) (F(x(m))\m (I - F(x(m))\^'^ 
g(x(m)) \G(x(m)) J \l - G(x(m)) 

where ^o denotes the prior likelihood ratio, which is the prior belief on High divided 

by the prior belief on Low state. The term F/G expresses the likelihood ratio inferred 

by m exiting traders, and the term (1 — F)/(\ — G) is the likelihood ratio inferred 

by staying traders, because the equation is based on the indifference condition 

for a staying trader and her own information is already included by the term f/g, 
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we only count N — 1 — m staying traders in this term. From equation (4.6), it is 

straightforward to show the optimality of the threshold rule: only if a trader draws 

an information greater than the threshold, i.e. Xj > x, the left hand side of (4.3) 

exceeds the right hand side due to the MLRP, would the trader chooses to stay in 

carry. 

The threshold rule has the following property. 

Proposition 4. The threshold function x(m) is increasing in m. 

Proof: See Appendix C.l. 

Then we obtain: 

i Fix) . , 1-Fix) , 

dx - log cm + log i=gbr + G(x) ^ 1W& l-G(aS) ^ -(AsH+S)(AsL+S) 
dm /'(ap-g'Qz) . / f{x) g(x) \ , (M i rn\ ( g(^) / M 

m/g(x) + m [FW) ~ GW)J + ^V X m) \l-G(x) 1-F(x)t 

> 0 (4.7) 

This implies that traders' decisions exhibit strategic complementarity: when 

a trader decides to exit, it increases m and then x. making other traders more likely 

to exit. 

4.3.2 Equil ibrium 

We define an equilibrium as a mapping from a profile of realized private informa­

tion (x^ to an action profile with m "exits" and TV — m "stays", such that the 

number of traders with X{ < x(m) coincides with m for each realization (ajj). The 
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equilibrium notion here is a standard rational expectations equilibrium in a market 

microstructure with a market maker and traders submitting supply schedules (Vives 

(2008)). 

Next, following Nirei (20066, 2008), we characterize the equilibrium by 

constructing a fictitious tatonnement process. We imagine that the market maker 

finds an equilibrium m as follows. At the initial step s = 0, the market maker starts 

with ms=o = 0 and counts the number of traders who would exit according to their 

supply schedules given the information m = 0. If no trader exits, then the process 

stops here and m = 0 is chosen as an equilibrium. If ns=o > 0 traders choose to exit, 

the step is increased to s = 1, and ms=\ is set by ms = ms-\ + n s_i . If no traders 

other than the traders who chose to exit previously decide to exit, then the process 

stops and m = ms is chosen as an equilibrium. Otherwise, the step is increased 

and the process iterates until it stops. Nirei (20066) has shown that this procedure 

always converges to an equilibrium, m, and the selected equilibrium is the smallest 

among potential equilibria. 

The fictitious tatonnement process, ms, s = 0 , 1 , . . . , can be embedded to a 

stochastic process defined in the probability space of the private information profile 

(xi). Namely, we can derive the probability distribution of ms+\ conditional on ms 

before the realization of x\. It is shown (Nirei (20066)) that ns follows a branching 

process in which the number of "children" born by a "parent" in step s follows 

a binomial distribution with a probability parameter ps and population TV — ms, 

and if we increase N to infinity, the binomial asymptotically converges to a Poisson 
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distribution with mean /xs = lini/v-Kx> Ps(N — ms). 

This property of the fictitious tatonnement process is utilized to charac­

terize the equilibrium. The equilibrium m is the sum of ns over s, the total number 

of "children" born in the branching process until it stops. Then, we can apply a 

powerful theorem by Otter (see Harris (1989)). Consider a branching process ns, 

in which the mean number of children per parent is constant at /x, and the initial 

condition is no = 1. Then the total population, m = X)sns' follows a dampened 

power-law distribution in the tail: 

Pr(m | m0 = 1) ~ m_ 1-5(/ie1- ' i)m 

= C 0 m- L 5 e -^ m (4.8) 

for a large m, where ^ is a constant determined by the distribution of the number 

of children per parent. In our case, where the number of children follows a Pois-

son distribution, we further have <f> = [j, — 1 — log/x for the case of /x < 1 (Nirei 

(20066)). The key parameter for the fluctuation of m is /x. When /x < 1, the ficti­

tious tatonnement ns is a supermartingale, which stops in a finite step, and whose 

total population m is finite with probability one. Equation (4.8) and the relation 

between <fi and \x implies that the mean and variance of m is determined by /i. A 

greater // decreases 4> a n d thus makes the exponential truncation point further in 

the tail of (4.8). /x = 1 is the critical point at which (4.8) reduces to a pure power 

law distribution with indefinite mean. Thus, we observe that the model is capable 
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of generating a substantial size of fluctuations in m when fj, is close to 1. When /i 

is greater than 1. the fictitious tatonnement is "explosive" and there is a positive 

probability in which the process does not stop in a finite step. In our finite model. 

this event corresponds to the case, m = N. 

In our model. \xs is not constant over the tatonnement step s. However, 

we can infer the range of /J,S as follows. Suppose that the true state is "Low." For 

a large N. the mean number of traders who are induced to unwind the carry by 

observing an additional trader unwinding to the existing unwinding traders m is 

approximated by: 

Us ~ (N - ms)g(x(ms))/(l - G(x(ma)))(dx(ma)/dm), (4.9) 

where dx/dm is the increase in the threshold, g/(l — G) is the conditional density 

at the threshold level (i.e. the hazard rate), and N — ms is the number of staying 

traders at step s. Then. 

_ lncr F ( a «) _|_ W l~F^) 4. (AsL-AsH)(fc- l )AS ' 
= H m ^ Q(«.) + lQg 1-gyj + - ( A , g + « ) ( A . ^ ( } 

P jV^oo 1 f'(xs)-g'(xa) ^ } 

N-m f(xs)/(l-G(xs)) 

i 0 g G(xs) "T 1QS 1-G(xa) + -(AsH+S)(AsL+6) 

f(xs)/g(xs) 
N-m l F ( i s ) / ( l - G ( i , ) ) 

_ l -G(s a A 
G(xs) J 

_ W F ^ 4- W 1 - - F ( g ") 4- (AsL-AsH)(fc-l)As' 
1Qg G ( ^ ) "*" 1 0 g 1-C?(xs)

 + -(AsH+<5)(AsL+,5) 

N-l-m (-, f(xs)/g(xs) \ 
N-m \ l (1-F(xs))/{1-G(xs)) J 
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where xs is a short-hand for x{ms). For a fixed, finite rns, we have: 

_ W Ffa) , i n t r 1--F(x.) , (AsH-AsL)(k-l)As' 
_ i Q g G(s . ) + I O § 1 -G(x . ) + (AsH+<5)(ASjL+,5) , , , , > 

M s ~ i f(xs)/g(x.) • ^ ^ 
1 (1-F(x.))/(1-G(x.)) 

Note that: 

. W ZM + ] o e i~F(^) i o e m/gjx) _ , /(x)/g(x) 
1 0 5 G(z) + 10& l-G(x) _ 1QS F{x)/G{x) 1 0 S (1-F(x))/(1-G(x)) 

1 /(x)/g(x) i /(x)/g(x) 
1 (1-F(x))/(1-G(x)) X (1-F(x))/(1-G(x)) 

> 1. (4.12) 

Thus, the fictitious tatonnement starts out as an explosive process near ms/N = 0. 

For a range of larger values of ms, we can characterize /i as follows. Con­

sider an alternative continuum version of our model in which there are a continuum 

of traders rather than finite TV traders. Then, by the law of large numbers, we 

expect that the equilibrium fraction of exiting traders to be G{x). Thus, we impose 

m/N = G{x{m)) in the expression (4.11). Then: 

* / N A / x (AsH-AsL)(k-l)As' ,A noN 

tia * Ai (x) + A2(x x v * yy ' , 4.13 
{AsH + O){ASL + d) 

where: 

and 

! Fix) . , 1-F(x) 

Al = - l o g Ay + log^y_ (414) 1 ~ /(x)/g(x) f{x)/g(x) ^ • i ^ 
F(s)/G(x) (1-F(x))/(1-G(2)) 

A 2 ~ /(x)/g(x) /(x)/g(g) ^ 1 5 ^ 
F(s)/G(x) (1-F(2))/(1-G(x)) 

Thus Ai takes a value greater than 1 when x is small (and thus m is small) 

106 



www.manaraa.com

by the argument in Equation (4.12), whereas it takes a value less than 1 when 

x —> oo (and thus m —> N). Thus, we can infer that /is travels from an explosive 

region to a dampening region (if k is small enough) as the fictitious tatonnement 

develops into a larger m. This suggests that the tatonnement generates m smaller 

than TV when N is large enough, and the fluctuation of m follows the dampened 

power-law distribution. 

To summarize, in the absence of strategic complementarity, a random real­

ization of signals xt about "High" or "Low" state would have induced some traders 

to unwind independently of one another. Then, at the completion of the taton­

nement process the total population of unwinding traders m would have been drawn 

from a Poisson distribution with mean \i\. For N —>• oo the sum of Poisson events 

converges to a Normal distribution. On the other hand, chasing the common infor­

mation about "the day of reckoning" introduces strategic complementarity. Then, 

an initial "independent" unwinding action drawn from a Poisson distribution with 

mean n\ triggers a chain reaction (a branching process) with intensity JJL that stops 

in finite time for /x < 1. As a result, m will be drawn from a population distribution 

that exhibits a power-law with exponential truncation in the tail, with the speed of 

exponential truncation, </>, inversely related to \i. 

4.3.3 Leve rage 

In addition to issuing liabilities in low-interest currencies, carry trade can be con­

ducted using currency forwards and futures on the margin (Gagnon and Chaboud 
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(2007)), since as long as covered interest parity (CIP) holds a long dollar short yen 

currency futures position profits from the UIP violation much like a long dollar bond 

short yen bond position.8 

Let 0 < M < 1 denote the margin requirement, such that M = 1 means 

that 100 percent of the dollar asset purchase must be financed by the trader's funds. 

Trading on the margin allows for leveraged positions. To simplify notation, assume 

that the interest rate in low yielding currency is approximately zero: i* ~ 0. Then 

a carry trader who maximizes the expected value of next period's wealth faces the 

following budget constraint: 

w'= (w-k') + ^-E(As + 6)k', (4.16) 

where w denotes current wealth of which k' is invested in carry trade on 

the margin. The threshold condition (4.1) becomes: 

E(As + 5 | m,Xi = x(m)) = M. (4.17) 

Equation (4.17) illustrates the mitigating effect of a higher margin require­

ment. Since the return to carry trade must now cover the opportunity cost of 

foregone alternative uses of a trader's initial wealth, which she has instead pledged 

as collateral for carry trade, a higher margin requirement raises the required ex­

pected rate of return to satisfy the threshold rule. In equilibrium the intensity of 

8For evidence that the deviations from CIP are rare and insignificant see for example Burnside 
et al. (2008). 
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the branching process, JJLS. depends on M in a complex non-linear fashion: 

A / N A / N (AsH - AsL)(k-l)As' ,A,n. 

Equation (4.18) shows that the effect of M on /is is determined by the 

relative value of the percentage margin requirement to the percentage interest rate 

differential, 6. When M is close to 1, the denominator on the RHS of (4.18) is large, 

mitigating the effect of expected crash risk, (ASH — ASL), and accumulated carry 

positions, k, on \i. On the other hand, when M approaches zero from above, espe­

cially when it falls below the value of 8, the denominator becomes small, magnifying 

the impact of crash risk and carry trade volume on /zs. 

Figure 4.3 [about here] 

Figure 4.3 shows the relationship between the margin requirement and /z, 

holding other parameters constant. We set the interest rate differential equal to 4 

percent and yen depreciation equal to 5 percent in "High" state and -4 percent in 

"Low" state. Total carry position is set at k — 100,000 units. The figure shows 

that when the margin requirement is high a reduction in margin requirement has 

virtually no effect on the intensity of the branching process measured by fj, (herding). 

However, when the margin requirement is lowered below a certain threshold (in 

this case approximately 20 percent), then the branching process begins to intensify 

exponentially. Since \i is inversely related to the degree of exponential truncation 
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in the tail of the distribution of m, a higher \x necessarily implies a thicker tail in 

the probability distribution of aggregate action, and hence more extreme volatility. 

Moreover, when the margin requirement reaches the second threshold (in this case 

approximately 10 percent) then \x is suddenly taken from subcritical (/x < 1) to 

supercritical state (/J > 1), implying an "explosive" episode of coordination on the 

same action (all carry trader unwind). 

4.3.4 Exchange Rate 

The function As(mk — N + m) is constructed such that the dynamic pattern of 

exchange rates matches with the model when the static equilibrium of the model 

is repeated with evolving currency position k. Consider the case fco = 0. Then 

the effect of As on \i in (4.11) is negative, and thus we expect a high probability 

for staying behavior: k' = 1. In the next period, we set k\ = k! = 1. We have 

a greater value of /is. and expect some probability of collective unwinding. When 

k becomes quite large, we expect an even higher probability of sudden unwinding 

because of a greater /zs. Thus, we expect a small value of m and a gradual increase 

of k over periods, whereas the development of the carry accumulation is punctuated 

by a "sudden fall" when m takes some large positive value. In terms of the exchange 

rate, the currency appreciation As is a negative function of mk — N + m, and thus 

the dynamics of m corresponds to the long periods of gradual appreciation of the 

dollar punctuated by sudden crashes. 
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4.4 Evidence from Stochastic Volatility in the J P Y / U S D 

Exchange Rate 

4.4.1 Data 

We use intraday JPY/USD exchange rate data from Olsen and Associates. The data 

was collected from commercial banks by Tenfore and Oanda, and covers the January 

1, 1999 to February 1, 2007 time-period. The data consists of the bid and the offer 

spot exchange rate at the end of every 5-minute interval over every 24-hour period. 

The quotes are indicative quotes, i.e. not necessarily traded quotes. In addition 

we construct a daily series of the interest rate spread between U.S. and Japan as 

the difference between the effective federal funds rate and Japan's uncollateralized 

overnight call rate, which are publicly available from the Federal Reserve Bank of 

New York and Bank of Japan respectively. Finally, we obtain daily data on the S&P 

500 options implied volatility index (VIX) from Wharton Research Data Services 

(WRDS). 

Figure 4.4 [about here] 

The left panel of Figure 4.4 shows the normal kernel density plot of the 

JPY/USD exchange rate log-return series for our sample period. The leptokurtic 

features are apparent, with a fatter negative tail (yen appreciations). The right 

panel shows the associated quantile-quantile plot against a normal distribution (red 

line). Again, the negative tail exhibits a larger deviation from the normal hypothesis 
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and has a higher number of data points in the extreme range. In the remainder of 

the section we provide statistical and economic analysis to better understand the 

underlying data generating process of these extreme realizations in the tails of the 

distribution of JPY/USD returns. 

4.4.2 Extract ing J u m p s Us ing Bi -Power Variation 

Consider a jump diffusion process for the evolution of foreign exchange rate returns: 

ds(t) = n{t)dt + a{t)dW{t) + n{t)dJ{t), (4.19) 

where s(t) is log exchange rate, //(£) is drift, a(t) represents Gaussian volatility 

component, and W(t) is standard Brownian motion such that dW(t) = \fdtdz with 

dz ~ N(0,1). The last term on the RHS represents the stochastic jump process, 

K,(t) is the size of jump at time t and dJ(t) is an indicator of jumps; dJ(t) = 1 with 

probability \{t)dt and 0 otherwise. A standard practice is to assume that jumps 

are independent of one another, and therefore to model their arrival rates with a 

Poisson process where \{t) would correspond to a Poisson arrival rate. In contrast, 

we do not make any parametric assumptions about K(t). Instead we use a non-

parametric method of bi-power variation of Barndorff-Nielsen (2004) to estimate 

daily jumps as the difference between the total intra-day realized volatility, RVt(A), 

and its continuous component, BVt(A). RVt(A) is the sum of square intraday 

discretely sampled A -period returns between time 0 and time t. If the intraday 
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data is obtained at five minute intervals then 1/A = 288 is the number of daily 

data points. Barndorff-Nielsen (2004) show that in the limit (as A —> 0) realized 

daily volatility approaches the continuously aggregated sum of square returns. Since 

returns from two adjacent intraday sample points share the persistent volatility but 

not the sporadic jumps, it follows that bi-power variation provides a reasonable 

proxy for the persistent component of the volatility: 

BVt+i(A) -»• J a2(s)ds, (4.20) 

as A -> 0. 

Since realized volatility. i?Vt+i(A), and bi-power volatility. BVt+i(A), can 

be directly calculated from the observed returns, it follows that the jump component 

can be approximated as the difference of the two: 

RVt+1(A) - BVt+1(A) ^ ^ "2(s)> ( 4 2 1 ) 
t<s<t+l 

where positive and negative jumps are indexed according to the direc­

tion of the corresponding daily return: n+(t + 1) = ^As(t+i)>o E « s < t + i K2(S) a n d 

K-(t + 1) = ^As(t+i)<o Et<s<(+i n2(s). with I() representing an indicator function 

for positive and negative daily returns respectively. We take additional steps to 

account for the finite sample bias, and in addition to reporting all jumps, we report 

jumps estimated with a = 0.05 and 0.01 significance levels correcting for intraday 

noise. Choosing to estimate fewer but more probable jumps as opposed to a contin-
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uous adjustment amounts to choosing a lower significance level a associated with 

critical value $ a . The details of this procedures are outlined in Appendix C.2.1. 

4.4.3 Descriptive Statistics and Serial Correlation in Yen appreci­

ation Jumps 

Table 4.1 shows jump summary statistics. Mean absolute values of jumps in yen 

appreciations are higher for all a ranging between 0.019 and 0.044, compared to 

0.16 and 0.36 for jumps in yen depreciations. Negative jumps (appreciations) also 

exhibit higher kurtosis. The maximum jump in appreciation is 2.959 compared to 

the maximum jump of 1.482 in yen depreciation. The last row of Table 4.1 reports 

Ljung-Box test statistic for white noise. Negative jumps exhibit a high degree of 

serial correlation with the Q-stat in the 133.5 to 161.9 range. Using a more restrictive 

a = 0.01 criteria serial correlation is rejected for positive jumps selected. Overall, 

Table 4.1 indicates that jumps in yen appreciation are more rare than jumps in yen 

depreciation, but tend to be larger in magnitude and occur over several consecutive 

days, implying an element of predictability. 

Table 4.1 [about here] 

4.4.4 Sample Split by U.S.-Japan Interest Rate Differential and the 

VIX 

Next we split the sample by the interest rate differential between U.S. and Japan, and 

by the level of VIX, focusing on a = 0.01 jumps. If carry trade plays a significant role 

114 



www.manaraa.com

in the stochastic volatility of the JPY/USD exchange rate then the contrast between 

yen appreciation and yen depreciation jumps should be magnified when the incentive 

to engage in carry trade is high (high interest rate differential) and when overall 

market uncertainty is high (high level of VIX). Based on the historical time-series in 

Figure 4.1 we observe roughly two regimes in the interest rate differential and VIX. 

Throughout our sample period Japan maintained a zero-interest rate policy, while 

the dot-com collapse in the U.S. resulted in monetary easing beginning in late 2000. 

and the interest rate differential between the two countries fell to the level between 

1 and 2 percent where it remained until the Fed began raising rates in 2004. Also, 

beginning in early 2003, the VIX settled at levels below 20 and exhibited a lower 

volatility. Therefore, we select 2 percent as the cutoff for the interest rate differential 

and 20 points as the cutoff for VIX (dashed lines). 

Table 4.2 [about here] 

Table 4.2 shows the associated statistics. Mean and maximum values for 

K- (yen appreciation jumps) are higher when the interest rate differential is high, 

0.124 compared to 0.093 and 1.386 compared to 1.124 respectively. The difference 

is more pronounced when compared across subsamples split by VIX. When VIX is 

high K_ mean and maximum are 0.140 and 1.386 compared to 0.078 and 0.510 when 

VIX is low respectively. In contrast. K+ (yen depreciation jumps) do not exhibit a 

higher mean or maximum when the differential is high, and only slightly higher mean 

when VIX is high. 0.099 compared to 0.082. Also, unlike yen appreciation jumps. 
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the jumps in yen depreciation exhibit no serial correlation. Overall, the comparison 

of summary statistics for jumps in realized volatility across different levels of the 

interest rate differential and VIX are consistent with the hypothesis that carry trade 

plays a role in the stochastic volatility in JPY/USD. 

4.4.5 Non-Linear Dependence in Yen appreciation Jumps 

Next we test for non-linear dependence in the jump series using the BDS test named 

after Brock, Dechert, and Scheinkman (1987). The BDS test can be thought of 

as non-linear counterpart of the Q-test.9 The test was applied to find evidence 

of conditional heteroskedasticity in foreign exchange rate returns by Hsieh (1989), 

who found that nonlinearity in the return series entered through changing volatility. 

We are able to examine whether discrete changes in realized volatility exhibit non-

linearity. The test embeds the time series of n(t) into m-dimensional vectors with 

overlapping entries, and computes the spatial correlation among the points in the 

m-dimensional space which are within tolerance radius e of each other. Properly 

adjusted for the sample size and specially defined mean and variance, the correlation 

statistic asymptotically follows a standard normal distribution. We select m in the 

same way as the number of lags for the Q-test. In addition, we parametrize the 

test to maintain robustness to unusual or unknown distributions of the series: we 

choose the tolerance radius such that 0.7 of the total number of pairs of points in 

the sample lie within e, and the p — values are computed by bootstrapping based 

9For detail see Brock et al. (1996). 
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on 1,000 repetitions. Table 4.3 shows the results. After a minimal correction for 

itraday noise is employed (such asft = 0.05) non-linear dependence is present only 

in yen appreciation jumps, and significant at 1 percent level for all m. 

Table 4.3 [about here] 

The BDS and the Q-test results indicate that yen appreciation jumps ex­

hibit both serial correlation and non-linear dependence while the null of white noise 

cannot be rejected for yen depreciation . It follows that yen appreciation jumps 

exhibit an element of predictability and clustering while yen depreciation jumps are 

random noise. What this suggests is that continuous trends of yen depreciations 

(with purely random occasional jumps) were on occasion interrupted by sharp yen 

appreciation jumps whose persistence is clearly outside the domain of Guaissian 

noise. 

4.4.6 Exponentially Dampened Power-law in the Distribution of 

Jumps 

Quintos et al. (2001) and Candelon and Straetmans (2006) inspect the tail behavior 

of foreign exchange returns non-parametrically with the inference based on distribu­

tion quantiles. In contrast, the equilibrium of stochastic herding yields parametric 

restrictions on the tail distribution. Interestingly, it matches the empirical findings 

10We also run the BDS test for jump series before separating into positive and negative samples 
to find strong evidence of non-linear dependence The results reported in the paper show that the 
time-series non-lmearity comes from yen appreciation jumps 
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in options literature (Wu (2006)) that describes the Levy density of jump compo­

nents, K, as an exponentially damped power-law: 

n-^+e-'t>+K , K > 0 
Pr{n) oc < 

| K | - C - e - < M K | , K < 0 

This specification is parsimonious enough to nest several families of jump 

processes. For instance the values of the power exponent 1 < £ < 3 favor a Levy 

regime implying fat tails and undefined second moment while £ > 3 favors a Gaus­

sian regime with finite variance.11 Nirei (20066, 2008) shows that an exponentially 

dampened power-law in the distribution of rare events arises in the environment 

characterized by periodic episodes of coordination in traders' actions. Hence, putting 

the above structure on the tail ultimately allows us to make inferences about the 

underlying data generating process. 

In order to examine whether the tail distribution of K follows a power-law 

we follow the methodology of Clauset et al. (2009). For each possible choice of cutoff 

values for the power-law tail in the distribution of K, we estimate the power exponent 

via the maximum likelihood and calculate the Kolmogorov-Smirnov (KS) goodness-

of-fit statistic. We then select the minimum cutoff, Kmin. that gives the minimum 

KS-statistic. Figure 4.5 shows the probability plots for positive and negative jumps 

11In a panel study of different currencies Bakshi et al. (2008) estimates parameters of a jump 
diffusion processes with exponentially dampened power-law. They do not have observations on 
jumps separately, so they estimates £ and (j> for positive and negative jumps as a part of a richer 
parametrization scheme for the entire return process. Our study is the first to examine the goodness-
of-fit of exponentially damped power-law model to empirical observations of jumps. 
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for each level of significance on a log-log scale. The fitted straight line on the log-log 

probability plot indicates that distributions of jumps exhibit strong power-law tails. 

Figure 4.5 [about here] 

Next we examine whether the power-law tails in yen appreciation jumps 

are subject to exponential truncation as stipulated by the model. Table 4.4 shows 

exponentially dampened power-law parameter estimates for negative jumps selected 

at three different significance levels against the two alternatives: Pareto (pure power-

law) and lognormal (an alternative of random noise) distributions. Given that the 

distribution parameters are estimated from a relatively small number of observations 

in the tail we use The Bayesian Markov Chain Monte-Carlo (MCMC) method to 

estimate the fitted parameter uncertainty for the exponentially dampened power-

law. Details of this procedure are provided in Appendix C.2.2. 

Table 4.4 [about here] 

The log likelihood values indicate that the exponentially dampened power-

law is the preferred model for all three negative jump series. This is confirmed by the 

Akaike information criteria (AIC) and AIC corrected for small sample size (AICc). 

The estimates of £ tend to decline as only significant jumps are selected, tending 

towards the borderline case of £ = 2. The estimates of the power-law exponent £ in 

the neighborhood of 2 indicate that the data on yen appreciations was drawn from 

a process with infinite second moment, rather than Merton's compound Poisson 

normal process. 
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Table 4.5 [about here] 

Table 4.5 shows exponentially dampened power-law parameter estimates 

for positive (yen depreciation) jumps. Once again a compound Poisson jump process 

is rejected in favor of a model that yields a power-law tail. However, in contrast 

to negative jumps, the positive jump data for a = 0.01 favors a pure power-law 

(Pareto) distribution in the tail rather than exponentially dampened power-law as 

indicated by log likelihood and AIC values. Moreover, the power exponent £ = 3.2 

indicates a regime closer to Gaussian, with a finite second moment rather than a 

Levy process, as was found for yen appreciation jumps. The difference in parameter 

estimates and in their behavior across jumps of different significance levels indicate 

that while both negative and positive jumps follow distributions with power-law 

tails, the underlying data generating processes are not the same. This is confirmed 

by the simulations of a = 0.05 jumps shown in Figure 4.6. with the exponentially 

dampened power-law parameters from Tables 4.4 and 4.5. 

Figure 4.6 [about here] 

The top panel in Figure 4.6 corresponds to the simulated series, while the 

bottom panel displays the empirical observations of jumps. The amplitude in fluc­

tuations is higher for both empirical and simulated series for the negative jumps. 

The simulation of the negative jump series matches the pattern of the data in gen­

erating small jump periods punctuated by extreme deviations. This is not the case 

for the positive jumps. The simulation based on distribution parameter estimates of 
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positive jumps produces a series more even in magnitude, consistent with the lower 

variability of the observed positive jumps. Based on simulation results, we suspect 

that the underlying data generating process differs for negative and positive jumps, 

with negative jumps subject to more extreme fluctuations. The contrast between 

the simulation results of yen appreciation (negative) and yen depreciation (positive) 

jumps clearly captures the origins of the negative skewness of JPY/USD returns. 

Finally, the model predicts the power exponent of 1.5 in the exponentially 

dampened power-law. Our empirical estimates for the exponent, conditional on the 

cut-off value for the tail selected based on the best fit for the Pareto distribution 

have yielded estimates of the exponent in the neighborhood of 2. This gap may 

be rectified by modifications on estimation and modeling. Table 4.6 illustrates that 

under an alternative selection criteria for the cut-off, Kmin, estimates of 1.5 for £ are 

also within the feasible range. The lower cut-off on the tail observations has been 

selected as one standard deviation in the empirical jump data. Under this more 

inclusive specification the power-law exponent is 1.527 for negative jumps and 1.495 

for positive jumps. 

Table 4.6 [about here] 

Alternatively, it is known that the power exponent ( derived in the model 

is increased above 1.5 if the parameter /i is taken gradually from below the criticality 

\i < 1 toward the criticality during the time span of observations. This mechanism is 

called a "sweeping" of control parameter towards a critical point (Sornette (2006)). 
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Recall the case in which we repeat the static equilibrium over periods where the 

currency position k is updated over the periods. When k is small, the tatonnement 

is likely to be subcritical, with \x < 1, while \i is increased toward 1 as k increases. 

Thus, the effect of possible sudden yen appreciation due to the collective unwinding 

becomes more significant on the overall return when the volume of existing carry 

trade position is large. If our data is generated by such a process, the situation 

exactly falls in the scenario of the sweeping of a parameter where the key parameter 

\x gradually sweeps toward the criticality at 1. In this case, the observed jumps 

exhibit dampened power-law with exponent greater than 1.5. The exact value of 

the exponent depends on how the parameter fj, is increased over periods. 

4.4.7 Economic Determinants of the "Tail Risk" 

The model imposes a number of restrictions on the relationship between 0 = /J, — 

1 — log(fj,) and the economic variables related to carry trade activity. We begin with 

a subsample analysis. Since the stochastic dynamics in carry trade are conditional 

on non-negligible positive carry, 5, we expect the distribution parameters to take on 

model-implied values when the interest rate differential between U.S. and Japan was 

relatively sizable. Table 4.7 shows distribution parameter estimates for subsamples 

of high and low interest rate differentials considered in the previous sub-section. The 

power exponent, £, for yen appreciation jumps is 2.007 when the differential is high 

(closer to 1.5 implied by the model) compared to 2.394 when the differential is low. 

The exponential truncation parameter 0 is 1.250 when the interest differential is high 
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compared to 1.410 when the differential is low. For both parameters the difference 

is approximately 2 standard deviations, significant at the 5 percent level. The lower 

(j) during higher interest rate differential period indicates the exponential truncation 

point further in the tail of the distribution - a higher "tail risk." Intuitively, this 

means that when the interest differential is high a larger adjustment is induced 

by the same size perturbation, that is a larger number of traders, m, would have 

unwound their carry positions having observed an "independent" unwinding action 

of an initial trader mo = 1. 

In addition to the interest rate differential we also split the sample by VIX. 

Although a risk-neutral setup is sufficient to generate the necessary dynamics, we 

expect higher risk aversion (also to the extent that it is associated with tighter 

funding constraints) to be associated with higher "tail risk" (lower 4>). Table 4.8 

shows distribution parameter estimates for subsamples split by the level of VIX. 

Consistent with the above hypothesis, when VIX is high then the exponentially 

dampened power-law has a higher log likelihood than a simple Pareto. We also get 

a considerably lower estimate of <f> compared to when VIX is low, 0.620 versus 3.327. 

with the difference significant at 1 percent level. 

Tables 4.7 k 4.8 [about here] 

Figure 4.7 shows the kernel density plots of yen appreciation jumps for high 

and low VIX subsamples analyzed in Table 4.8. The figure confirms that lower (j) 

during high VIX periods is associated with a more stretched tail of the distribution. 

123 



www.manaraa.com

Thus, risk in the JPY/USD currency market appears to be directly linked to risk 

aversion and uncertainty in broader financial markets. 

Figuie 4.7 [about here] 

The extreme case of (f> = 0 corresponds to the criticality of /x = 1. Then, 

the model generates a pure power-law distribution for m and the branching process 

becomes a martingale, that is the conditional expectation then is that all managers 

liquidate next period if all are liquidating in the current period. At this stage, the 

feedback between traders is at a maximum and will eventually lead all traders to 

coordinate on the same action. The top panel of Figure 4.8 shows data simulated 

using a power-law fit to the negative jump series. The simulation approximates the 

general amplitude in the fluctuations of the empirical data shown in the bottom 

panel except for the one "catastrophic" event when the simulated jump exceeds 11 

in absolute value. The simulation illustrates the ability of the model to incorporate 

"rare" disasters and day-to-day volatility in the same data generating process. This 

is because the estimates of the power exponent (tail index) for yen appreciation 

jumps favor a Levy regime with undefined second moment entailing the probability 

of an "extreme" event much higher than can be drawn from a Gaussian regime. 

Figure 4.8 [about here] 

The preceding analysis has shown that the crash risk of the carry currency 

rises exponentially as <j) —> 0. In order to better understand the economic determi­

nants of such "tail risk". we conduct a structural examination of the dependence of 
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<f> on the variables related to carry trade based on Equation (4.18). Equation (4.18) 

allows us to sign the impact of accumulated carry positions, k, expected "crash," 

(As# — ASL), and margin requirements, M, on (j>. The second column of Table 4.9 

lists the expected signs of the impact on (f>. based on partial differentiation of /i with 

respect to each variable; recall that a higher intensity in the branching process p 

implies exponential truncation further in the tail of the distribution hence lower <f>. 

The fourth column of Table 4.9 lists the empirical proxies for k, (ASH — ASL), and 

M respectively. We proxy for k with CME non-commercial short futures positions 

in the yen (which CFTC classifies as speculative), for (As# — ASL) we proxy with 

the values of risk reversals, and for M we use historical margin requirement data for 

yen futures trading obtained from the CME group12 We use initial margin require­

ment data on speculative positions. In addition, we also control for risk aversion, 

denoted as p, using historical VIX. We do this for two reasons: first, to the extent 

that VIX proxies not only for risk aversion but also for funding conditions, it is an 

important variable for gaging speculative forces in foreign exchange, and second, 

since the value of risk reversals conveys option implied skewness and skewness risk 

premium, or equivalently (As# — ASL)P, it is necessary to control for risk aversion 

separately with a proxy such as the VIX. While we were able to obtain data on non-

12CME Group sets four margin requirements for currency futures, namely initial and maintenance 
margins on speculators and hedgers/members. A sample margin requirement report is shown in 
Figure 4.13. A trader is classified as a "speculator" if the trader is not identified as hedging a foreign 
exchange exposure according to the entity's Statement of Reporting Trader (CFTC Form 40). The 
CFTC staff may re-classify the trader if they possess additional information about the trader's use 
of the futures market. The "speculator" or "non-commercial" category mostly includes professional 
money managers such as hedge funds and commodity trading advisers. A sample report if shown in 
Figure 4.14. For further details see http://www.cftc.gov/MarketReports/CommitmentsofTraders/. 
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commercial shorts and the VIX and CME initial speculative margin requirement in 

yen futures for the entire January 1, 1999 through February 1, 2007 period, the risk 

reversal data was only available as of September 2003. 

Table 4.9 [about here] 

Again, we use Bayesian econometrics, which provide convenient tools for 

treating distribution parameters themselves as stochastic. We use Bayesian MCMC 

implemented via Metropolis-Hastings (MH) method.1314 It is more parsimonious 

than Gibbs sampling in that it does not require a conjugate prior for each distri­

bution parameter, but samples from a proportional probability distribution to the 

density to be calculated. We use an MH algorithm to sample from the following 

hierarchical model: 

Pr(K3) oc K " 1 V ^ * ' , and (4.22) 

4 

4>3 = 70 + J21iJXiJ + ej? J = 1, 2 . . . , J, (4.23) 

with priors, 

70 ~ N{vo,vo), (4.24) 

-yi~N(jJn,ai), and (4.25) 

13The estimation was conducted with WmBUGS software following the Bayesian modeling frame­
work outlined in Lunn et al (2000) 

14See Chib and Greenberg (1995) for a comprehensive reference on Metropolis-Hastings algorithm 
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r e ~ i > e , / 3 e ) (4.26) 

where N(-) and T(-) denote Normal and Gamma distributions. The hyper-

parameters for 70 and 7/'s were selected such that prior means match the MLE 

estimates. We account for additional variability in (f> via a random effects term, €j, 

whose precision is measured by re. We are most interested in obtaining the coefficient 

vector of 7;'s on the vector of four controls, X = [k, p, M, (ASH — ASL)]- the 

volume of non-commercial yen short futures, VIX, the CME margin requirement, 

and risk reversals. The first three values are nominal, and therefore enter in logs. 

The risk reversals enter with a 1 day lag in order to avoid endogeneity issues due to 

the possible reverse causality from a yen appreciation jump to higher absolute value 

of risk reversals. 

Table 4.10 [about here] 

Table 4.10 shows the estimation results. The signs of the coefficients are 

consistent with model hypothesis: higher k and (ASH — ASL) are associated with an 

increased "tail risk" of sharp yen appreciation (lower (f>), while higher M is associated 

with lower risk (higher 4>). The coefficients on non-commercial speculative short 

yen positions, k, are statistically significant under all specifications confirming our 

main hypothesis that carry trade plays a major role in stochastic volatility of the 

JPY/USD exchange rate. The coefficient on VIX is also negative indicating that 

higher VIX is associated with a more elongated tail on the yen appreciation side (or 

equivalently more negative skewness in JPY/USD as found in Brunnermeier et al. 
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(2009)), but becomes insignificant when controlling for speculative short positions. 

This indicates that risk aversion and funding considerations implicit in the value of 

VIX affect the skewness of the JPY/USD exchange rate primarily through changes 

in carry trader positions, k. 

The coefficients on margin requirement and risk reversals, although of the 

hypothesized sign, are insignificant when added sequentially. For instance, the co­

efficient on M in specification (5) is 1.024 (standard error 0.719) indicating that 

M has statistically significant positive impact on <f> at the 68% but not at the 95% 

confidence level. This may be due to much lower variability in the margin require­

ment which changed anywhere between 3 to 10 times per year during our sample 

period. Shorter sample in the case of risk reversals is another impediment. When we 

restrict the vector of controls of 0 to a constant, lagged risk reversals, and random 

effect, then the coefficient on risk reversals more than doubles, and is statistically 

significant at 5 percent level.15 

Figure 4.9 [about here] 

Figure 4.9 shows the pairwise scatter plot of the sampled coefficients, where 

15The inference of coefficient significance and correlations rest on the assumption of unbiasedness 
of the estimates. Figure 4.11 shows Bayesian MCMC diagnostic plots for 71 through 74. The 
first column plots the density of the samples. Symmetric bell curves indicate a good mixture and 
that a normal approximation to the standard errors is reasonable. The second column plots the 
rapidly declining autocorrelation function of the samples indicating a rapid mixing with estimates 
theselves approaching white noise. The third column shows a visual test for endogeneity via a 
scatter plot between sampled slope coefficients and the random effects component, re, which is 
bounded at zero from below. The scatter plots show a random spread consistent with exogeneity of 
the controls. Finally, Figure 4.12 shows Metropolis acceptance rates with acceptance rates reaching 
the stationary level around the commonly accepted level of 0.234 random walk MH algorythm 
within 1,000 to 2,000 samples; we discard the first 4,000 using the subsequent 10,000 for inference. 
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7i- 72- 73, and 74 are coefficients on CME speculative positions. VIX. CME mar­

gin requirement, and risk reversals respectively. While most scatter plots show a 

random spread (no multicollinearity) the scatter plot between 7! and 73 (71 and 

74) exhibit a negative (positive) correlation. Figure 4.10 shows the blowup plots 

for these coefficient pairs with best linear fit. The correlation between coefficients 

on speculative positions and margin requirement (71 and 73) is -0.3528, and the 

correlation between coefficients on speculative positions and risk reversals (71 and 

74) is 0.1650, with p — value=0.0000 for both. Such complementarity between the 

effect of k. M, and (ASJJ — ASL) has a ready economic interpretation based on 

Equation (4.18). Recall tha t both M~l and (ASH — ASL) affect the intensity of 

the chain reaction in carry unwinding multiplicatively with k. This indicates tha t 

tougher margin requirements have an effect of reducing the probability of extreme 

yen appreciation by mitigating the impact of carry t rade activity. Similarly, expec­

tations of sharp yen appreciation tend to be self-fulfilling and further increase the 

probability of extreme yen appreciation through the actions of carry traders. 

To summarize, this subsection served the dual purpose of testing the impli­

cations of the model and identifying the sources of "tail risk" for rare but significant 

events of a sharp yen appreciation. The findings point at carry trade as the ma­

jor factor. First, stochastic volatility on the yen appreciation side is more extreme 

when the incentive for currency speculation is higher (higher 5); second, stochastic 

volatility on the yen appreciation side is positively associated with a greater volume 

of speculative positions (proxied by CME non-commercial short yen futures con-
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tracts); and third, the effects of other financial variables, such as the VIX, margin 

requirement, and option implied expectations of yen appreciation risk appear to 

affect the probability of extreme yen appreciation through the carry trade channel. 

4.5 Conclusion 

This paper indetifies and empirically tests several features of speculative dynamics 

that contribute to such stylized facts as skewness and excess volatility in foreign 

exchange returns, otherwise known as the exchange rate disconnect puzzle . We 

model strategic traders trying to profit from the interest rate differential between two 

countries at the expense of exposing themselves to currency crash risk. The common 

uncertainty about the "day of reckoning" makes it rational for carry traders to infer 

information from each others' trades. This introduces an element of dependency in 

traders' actions leading to endogenous episodes of "explosive" carry unwinding via 

a chain reaction through information revelation. While the underlying dynamics 

are generated by the propensity of carry traders to herd, leverage can exacerbate 

the chain reaction in carry unwinding. The impact of leverage is highly non-linear, 

and suggests that there may exist an optimal percentage margin requirement on 

speculative positions which is a function of the interest rate differential between 

high and low yielding currencies. 

In equilibrium, the distribution of the number of traders unwinding their 

positions fluctuates according to a power-law with exponential truncation, and with 
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a linear price impact function, so too do the jumps in foreign exchange returns. The 

model yields a power-law exponent of -1.5 in the density function of jumps, which 

is found to be in the feasible range of our empirical estimates from the JPY/USD 

exchange rate. 

Because of prolonged "zero interest rate" policy of the Bank of Japan, 

the Japanese yen in particular has served as a funding currency in carry trade. 

Consistent with day to day volatility dynamics being influenced by carry trade, 

only yen appreciation jumps exhibit dependence and follow a Levy regime with 

unbounded variation, while yen depreciation jumps are best described as white noise. 

In particular, we find that sharp yen appreciations over the period from January 1, 

1999 through February 1, 2007 are more likely to follow an exponentially dampened 

power-law than Merton's compound Poisson normal process. The asymmetries and 

higher negative skew of JPY/USD returns are confirmed by simulations based on 

estimated distribution parameters. Since only yen appreciations would have been 

costly to carry traders producing different dynamics on the way up than on the way 

down, such asymmetries are consistent with the role of the yen as a funding currency 

in carry trade during our sample period. 

Based on parametric restrictions from the model we identify economic fac­

tors that lead to extreme volatility by intensifying the herd effect. In the analysis of 

subsamples we find that the key distribution parameter that captures the intensity 

of herding is higher during times of greater interest rate differential and higher values 

of VIX. Fitting the model in reduced form to the data, we find that tougher margin 
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requirements have an effect of reducing the probability of extreme yen appreciation 

by mitigating the impact of carry trade activity. Similarly, expectations of sharp yen 

appreciation tend to be self-fulfilling and further increase the probability of extreme 

yen appreciation through the actions of carry traders. The impact of the volume of 

speculative futures on the "tail risk" is particularly robust, corroborating the key 

hypothesis that speculative dynamics play a destabilizing role in foreign exchange 

markets. 

Our data do not include "extreme" episodes in JPY/USD return volatility 

corresponding to the 1998 LTCM collapse and the 2008 sub-prime crisis. Yet, ex­

ponentially dampened power-law parameter estimates indicate that the data comes 

from a distribution that generates yen appreciation jumps with unbounded varia­

tion, essentially attributing rare market crashes and normal return volatility to the 

same underlying mechanism. 
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Table 4.1: Serial dependence and greater extremes in yen appreciation jumps. 

Yen Appreciation Jumps Yen Depreciation Jumps 

Prop. 
Obs. 
Mean 
St. Dev. 
Skew. 
Kurt. 
Min. 
Max. 
Q-stat 

At_ 

0.474 
1255 
0.044 
0.113 
10.543 

202.355 
0.000 
2.959 

161.899*** 

K_(a = 0.05) 

0.246 
650 

0.026 
0.097 
14.290 

351.193 
0.000 
2.959 

79.366*** 

K_(Q = 0.01) 

0.172 
455 

0.019 
0.073 
8.575 

110.709 
0.002 
1.386 

133.528*** 

K+ 

0.485 
1276 
0.036 
0.079 
6.521 
77.961 
0.000 
1.482 

38.296*** 

K+(a = 0.05)«;+(a; = 0.( 

0.239 0.167 
628 438 

0.022 0.016 
0.068 0.055 
8.803 7.876 

133.712 105.325 
0.000 0.001 
1.482 1.125 

33.733*** 3.828 

Notes: The table shows summary statistics for realized volatility jumps in 
JPY/USD exchange rate. All jumps and jumps with a = 0.05 and a = 0.01. 
The Ljung-Box Q-test statistic (Q-stat) #lags=log(sample size); *.**, and *** 
indicate rejection of Ho of white noise at 5%, 1% and 0.1% level of significance 
respectively. 01/01/1999 through 02/01/2007 sample period. 

Table 4.2: Subsample summary statistics for realized volatility jumps in JPY/USD 
exchange rate. 

High Differential Low Differential High VIX Low VIX 

Prop. 
Obs. 
Mean 
St. Dev. 
Skew. 
Kurt. 
Min. 
Max. 
Q-stat 

K-

10.51% 
278 

0.124 
0.160 
3.941 
23.883 
0.002 
1.386 

88.506*** 

«+ 

10.90% 
286 

0.093 
0.089 
2.976 
17.218 
0.001 
0.780 
1.399 

K-

6.69% 
177 

0.093 
0.113 
5.172 

42.683 
0.002 
1.124 

46.481*** 

K+ 

8.12% 
213 

0.109 
0.098 
2.906 
15.898 
0.001 
0.780 
1.253 

K-

9.34% 
247 

0.140 
0.177 
3.769 
20.888 
0.002 
1.386 

63.216*** 

K+ 

5.80% 
152 

0.099 
0.126 
5.074 

35.761 
0.003 
1.125 
4.708 

K-

7.83% 
207 

0.078 
0.080 
2.672 
11.442 
0.002 
0.510 

25.4126*** 

K+ 

8.58% 
225 

0.082 
0.107 
5.765 

48.260 
0.007 
1.125 
3.616 

Notes: Samples split at (iu s — iJP) = 2% and VIX = 20 pts. Under a more conservative 
criteria only jumps significant at a = 0.01 included. The Ljung-Box Q-test statistic (Q-stat) 
#lags=log(sample size); *,**, and *** indicate rejection of of white noise at 5%, 1% and 0.1% 
level of significance respectively. 01/01/1999 through 02/01/2007 sample period. 
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Table 4.3. Non-linear dependence in realized volatility jumps 

Yen Apprecia t ion J u m p s 

K_ K-(a = 0 05) K-(a = 

dim B D S - s t a t p r o b B D S - s t a t p rob BDS-s ta t 
2 

3 

4 

5 

6 

0 024***0 0000 015*** 0 000 0 008** 
(0 003) (0 003) (0 003) 

0 043***0 0000 025*** 0 000 0 016*** 
(0 004) (0 005) (0 006) 

0 055***0 0000 028*** 0 000 0 022*** 
(0 005) (0 006) (0 007) 

0 063***0 0000 029*** 0 000 0 022*** 
(0 005) (0 006) (0 007) 

0 065***0 0000 027*** 0 000 0 020*** 
(0 005) (0 006) (0 007) 

Yen Depreciat ion J u m p s 

0 01) K+ « + ( a = 

prob B D S - s t a t p r o b B D S - s t a t 
0 016 0 009***0 000 0 002 

(0 003) (0 003) 
0 008 0 017***0 000 0 002 

(0 004) (0 005) 

0 002 0 019***0 000 0 001 
(0 005) (0 006) 

0 006 0 020***0 000 0 002 
(0 005) (0 006) 

0 010 0 021***0 000 0 002 
(0 005) (0 006) 

0 05) 

p rob 
0 554 

0 698 

0 850 

0 730 

0 622 

BDS-s ta t 
0 005 

(0 004) 
0 007 

(0 006) 
0 007 

(0 007) 
0 007 

(0 007) 
0 004 

(0 007) 

0 01) 

p rob 
0 144 

0 222 

0 278 

0 300 

0 490 

Notes T h e table show BDS tes t results , only yen appreciation j u m p s exhibi t non-linear depen­
dence S t a n d a r d errors in parenthesis , *,**, and *** indicate rejection of the null of 11 D a t 
5%, 1% and 0 1% level of significance respectively Test paramet r ized to be most parsimonious 
to unknown dis t r ibut ion m the d a t a so acceptance pa ramete r selected such t h a t 0 7 of the to ta l 
number of pai rs of points in t h e sample he wi thm the acceptance radius a n d p-values calculated 
by boo t s t r app ing based on 1,000 repet i t ions E m b e d m g diment ion (m) chosed as log(sample 
size) of the d a t a 

Table 4.4: Distribution parameter estimates for yen appreciation jumps. 

Dist 
Param 1 

Param 2 

Log-Like 
AIC 
AICc 

Cutoff 

Tail Obs 

Total Obs 

PL-Exp 

c 
3 110 

(0 193) 

4> 
0 080 

(0 021) 

39 012 
-74 024 
-73 845 

0 291 
(0 051) 

70 
(141 455) 

1,255 

K— 

PL 

c 
3 183 

(0 258) 

38 993 
-75 986 
-75 898 

LogN 
M 

-0 776 
(0 056) 

a 
0 463 

(0 040) 

9 387 
-14 774 
-14 595 

K. 

PL-Exp 

c 
2 377 

(0 199) 

4> 
0 528 

(0 018) 

209 283 
-414 566 
-414 502 

0 107 
(0 033) 

190 
(57 801) 

650 

_ (a = 0 05) 

PL 

c 
2 615 

(0 207) 

208 458 
414 916 

-414 884 

1 

LogN 
M 

-1 618 
(0 041) 

a 
0 564 

(0 029) 

146 591 
-289 182 
-289 118 

K. 

PL-Exp 

c 
2 246 

(0 204) 

4> 
1 040 

(0 023) 

128 253 
-252 506 
-252 406 

0 124 
(0 027) 

123 
(40 092) 

455 

_(a = o o i ; 

PL 

c 
2 704 

(0 223) 

127 160 
-252 320 
-252 270 

) 

LogN 

P 
-1 501 
(0 048) 

a 
0 528 

(0 034) 

89 240 
-174 480 
-174 380 

Notes Test the goodness of fit of exponentially dampened power-law Pr(re) oc K~^e - ^ K (an outcome of 
dependent events) versus Pareto (pure power law) and log-normal (an outcome of independent events) 
The power exponent estimated via the maximum likelihood then select the minimum cutoff K that gives 
the minimum KS-statistic Standard errors in parentheses Standard errors for f and <j> calculated using 
Bayesian MCMC method based on 10,000 simulations 
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Table 4.5: Distribution parameter estimates for yen depreciation jumps. 

Dist. 
Param 1 

Param. 2 

Log-Like. 
AIC 
AICc 

Cutoff 

Tail Obs. 

Total Obs. 

Notes: 

PL-Exp 

c 
2.510 

(0.202) 

<P 
1.125 

(0.018) 

198.864 
-393.728 
-393.549 

0.134 
(0.030) 

168 
(111.917) 

1,276 

K-H 

PL 

< 
2.967 

(0.224) 

197.884 
-393.768 
-393.680 

LogN 

M 
-1.502 
(0.036) 

a 
0.466 

(0.026) 

142.702 
-281.404 
-281.225 

K+(a = 0.05] 

PL-Exp 

C 
2.928 

(0.203) 

<t> 
0.321 

(0.026) 

145.335 
-286.670 
-286.606 

0.132 
(0.034) 

115 
(74.413) 

628 

PL 

c 
3.065 

(0.286) 

145.234 
-288.468 
-288.436 

1 

LogN 

M 
-1.538 
(0.045) 

a 
0.475 

(0.032) 

99.382 
-194.764 
-194.700 

Test the goodness of fit of exponentially dampened power-law Pr{ 

K + ( Q = o.oi; 

PL-Exp 

c 
2.983 

(0.203) 

4> 
0.642 

(0.032) 

117.424 
-230.848 
-230.748 

0.136 
(0.035) 

87 
(64.540) 

438 

K) OC K~^e 

PL 

c 
3.229 

(0.395) 

117.284 
-232.568 
-232.518 

) 

LogN 

M 
-1.547 
(0.047) 

a 
0.435 

(0.034) 

84.037 
-164.074 
-163.974 

^K (an outcome of 
dependent events) versus Pareto (pure power-law) and log-normal (an outcome of independent events). 
The power exponent estimated via the maximum likelihood then select the minimum cutoff K that gives 
the minimum KS-statistic. Standard errors in parentheses. Standard errors for £ and <p calculated using 
Bayesian MCMC method based on 10,000 simulations. 

Table 4.6: Model distribution parameter estimates with alternative cut-off for the 
tail. 

c 

4> 

Cutoff 
Log Likelihood 
Tail Observat ions 
Tota l Observat ions 

K-

2.288 
(0.197) 
0.713 

(0.026) 
0.113 

286.250 
274 

1255 

« _ ( a = 0.05) K. 

2.230 H t 
(0.196) 
0.744 

(0.035) 
0.097 

237.038 
211 
650 

- ( a = 0.01) 

(0.201) 
2.480 

(0.041) 
0.073 

244.226 
210 
455 

K+ 

i 2.146 
' (0.200) 

1.858 
(0.028) 
0.079 

538.233 
368 
1276 

K+(a = 0.05) 

2.049 :; 
(0.200) 
1.992 

(0.039) 
0.068 

428.577 
283 
628 

K+(a = 0.01) 

7^49ljp7 
(67201) 
4.324 

(0.046) 
0.055 

421.284 
268 
438 

Notes: Exponent ia l ly d a m p e n e d power-law Pr(n) oc K~<;e~^K pa rame te r s es t imated in t he 
tail wi th cutoff a t 1 s t a n d a r d deviat ion. Exponent ia l ly d a m p e n e d power-law pa ramete r s re-
es t imated expanding cutoff for t he tails of t he d is t r ibut ion t o 1 s t a n d a r d deviat ion bounds . 
Under this more inclusive specification a power law exponent of 1.5 is observed in t he da t a . 
S t a n d a r d errors in parentheses . 
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Table 4.7: Distribution parameter estimates, sample split by interest rate differen­
tial. 

High Interest Rate Differential 

« _ ( a = 0 01) K + ( Q = 0 0 1 ) 

Dist PL-Exp PL LogN PL-Exp PL 

Param 1 f C A* C C 
2 007 2 569 -1 530 2 769 3 610 

(0 194) (0 406) (0 057) (0 200) (0 690) 
P a r a m 2 <f> a tj> 

1 250 0 561 2 408 
(0 060) (0 041) (0 100) 

LogN 

M 
-1461 
(0 052) 

a 
0 355 

(0 038) 

K-

PL-Exp 

c 
2 394 

(0 204) 

<P 
1410 

(0 106) 

Low Interest Rate Differential 

(a = 0 01) K + ( a = 0 01) 

PL LogN PL-Exp PL LogN 

C M C C ^ 
2 874 -1 785 2 894 2 932 -1 745 

(0 511) (0 065) (0 198) (0 439) (0 081) 
a a 

0 487 0 094 0 531 
(0 047) (0 114) (0 059) 

Log-Like 92 538 93 749 65 281 68 830 68 576 51 153 78 550 81 079 61 272 63 659 63 671 42 640 
AIC -173 555-174 645-107 208-150 100-151 519-110 284-281 040-286 469-230 115 -87 736 -95 227-57 988 
AICc -173 417-174 577-107 070-149 860-151 401-110 044-280 896-286 398-229 970 -87 372 -95 051-57 624 

Cutoff 0 1138 
(0 063) 

Tail Obs 94 
(46 707) 

Total Obs 278 

0 1568 
(0 049) 

48 
(55 433) 

286 

0 0975 
(0 031) 

56 
(32 467) 

177 

0 1029 
(0 024) 

44 
(21 661) 

152 

Notes Exponentially dampened power-law Pr{n) oc K;_fe_^K parameters estimated for samples 
split at (iu s — iJP) = 2% The power exponent estimated via the maximum likelihood then select the 
minimum cutoff K that gives the minimum KS-statistic Standard errors in parentheses Standard errors 
for £ and tf> calculated using Bayesian MCMC method based on 10,000 simulations 
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Table 4.8: Distribution parameter estimates, subsample split by VIX. 

High VIX Low VIX 

. ( a = 0 01) re+(a = 0 01) n-(a = 0 01) K+(a = 0 01) 

Dist PL-Exp PL LogN PL-Exp PL LogN PL-Exp PL LogN PL-Exp PL LogN 

Param I C C ^ C C M C C ^ C C M 
2 358 2 664 -1 466 2 719 3 398 -1 539 1 933 2 682 -2 131 2 885 3 035 -1 590 

(0 190) (0 212) (0 059) (0 198) (0 558) (0 053) (0 198) (0 324) (0 056) (0 196) (0 333) (0 086) 
Param 2 (j> a <j> a eft a <j> a 

0 620 0 564 1 999 0 387 3 327 0 526 0 223 0 509 
(0 060) (0 043) (0 098) (0 039) (0 099) (0 040) (0 120) (0 063) 

Log-Like 88 777 88 323 55 604 77 050 76 759 57 142 142 520 144 235 117 057 45 868 48 614 30 994 
AIC -173 555-174 645-107 208-150 100-151 519-110 284-281 040-286 469-230 115 -87 736 -95 227-57 988 
AICc -173 417-174 577-107 070-149 860-151 401-110 044-280 896-286 398-229 970-87 372-95 051-57 624 

Cutoff 0 1257 0 1403 0 0651 0 1231 
(0 019) (0 037) (0 019) (0 025) 

Tail Obs 90 53 86 36 
(17 934) (36 537) (23 712) (34 358) 

Total Obs 248 213 207 225 

Notes Exponentially dampened power-law PV(K) OC re-<>e-^K parameters estimated for samples split 
at VIX = 20 pts The power exponent estimated via the maximum likelihood then select the minimum 
cutoff K that gives the minimum KS-statistic Standard errors in parentheses Standard errors for £ and 
<j> calculated using Bayesian MCMC method based on 10,000 simulations 
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Table 4.9: Economic determinants of "tail risk" of yen appreciation. 

Variable Impact on <fi Description Proxy 

{AsH - AsL) 

M + 

Cumulative carry 
position 

Expected dollar 
devaluation 

Margin 
requirement 

Risk aversion 

CME non-commercial yen short 
futures positions 
Sample: 01/01/1999-02/01/2007 
Source: CFTC 
Value of 10 delta 1-year yen-dollar 
risk reversal 
Sample: 09/28/2003-02/01/2007 
Source: Bloomberg 
Initial speculator margin for 
yen futures on CME 
Sample: 01/01/1999-02/01/2007 
Source: CME Group 
CBOE S&P 500 options implied 
volatility index (VIX) 
Sample: 01/01/1999-02/01/2007 
Source: WRDS 

Notes: Higher <fr corresponds to faster exponential truncation in the tail of the 
probability distribution; (j> is inversely related to the "tail risk". Although risk 
aversion (p) is not modeled explicitly, we control for it with VIX. We do this 
for two reasons: first, to the extent that VIX proxies not only for risk aversion 
but also for funding conditions it is an important variable for gaging speculative 
forces in foreign exchange and second, since the value of risk reversals conveys 
option implied skewness and skewness risk premium, or equivalently (ASH — 
ASL)P, it is necessary to control for risk aversion with a proxy such as the VIX. 
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Table 4.10: Impact of carry trade factors on the "tail risk". 

Dependent parameter: 

(1) (2) (3) (4) (5) (6) 
Non-Commercial Shorts (k) -1.201** -1.220**-1.912**-1.945*** 

(0.542) (0.592) (0.739) (0.734) 
Monte Carlo S.E. 0.016 0.020 0.028 0.025 

VIX (p) -1.838*** -0.326 -1.292 -1.228 
(0.581) (0.985) (1.004) (0.966) 

Monte Carlo S.E. 0.026 0.031 0.028 0.024 

CME Margin Requirement (M) 1.019 1.024 
(0.729) (0.719) 

Monte Carlo S.E. 0.026 0.023 

Risk Reversals (AsH - AsL) -0.685 -1.451** 
(0.944) (0.711) 

Monte Carlo S.E. 0.026 0.024 

re 0.727 0.743 0.542 0.604 0.592 0.800 
(0.559) (0.601) (0.436) (0.540) (0.529) (0.575) 

Monte Carlo S.E. 0.050 0.053 0.037 0.048 0.036 0.030 
Observations 123 123 123 123 24 24 

Notes: Higher 4> corresponds to faster exponential truncation in the tail of the 
probability distribution; <f> is inversely related to the "tail risk". Results based on 
10,000 samples after discarding the first 4.000 iterations as "burn-in". Standard 
errors in parenthesis. *, **. and *** indicate coefficients significant at 10%, 
5%. and 1% level respectively under the normality assumption for the simulated 
parameter values. 
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Figure 4.1: Daily time series of JPY/USD exchange rate, U.S.-Japan interest rate 
differential, CBOE VIX, and Non-commercial short futures positions in Yen. 
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Net Non-Commercial Short (% O I ) 1 Year 25 Delta Risk Reversal 

Figure 4.2: Speculative futures positions in yen and the cost of hedging against large 
yen appreciation. 
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Figure 4.3: Margin requirement and the intensity of the branching process measured 
by fj, (herding). Set AsH = 0.05, AsL = -0.07, 8 = 0.04, and k = 100,000. 
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Figure 4.4: Distribution of JPY/USD Log Returns. Left: Kernel density; Right: 
Q-Q plot versus normal distribution. 
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Figure 4.5: Power-law in the tail distribution of JPY/USD returns. Top: Yen 
appreciation jumps; Bottom: Yen depreciation jumps. 
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Figure 4.6: Top: Jumps in JPY/USD simulated using exponentially damp­
ened power-law with parameters cutoff=0.124, £=2.246, (^=1.040 for K- and cut-
off=0.136, C—2.983. ^6=0.642 for K+; Bottom: Empirical realized volatility jumps 

series. 
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Figure 4.7: VIX and the "tail risk" of sharp yen appreciation. 
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Figure 4.8: Top: Jumps in JPY/USD simulated using pure power-law with param­
eters cutoff=0.124, £=2.704; Bottom: empirical realized volatility jump series. 
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Figure 4.9: Scatter plot of sampled coefficients on CME speculative positions. VIX, 
CME margin requirement, and risk reversals. 
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Figure 4.10: The blowup of selected scatter plots. Left: coefficients on speculative 
positions and margin requirement Right: coefficients on speculative positions and 
risk reversals. 
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Figure 4.11: Bayesian MCMC diagnostic plots for specification (5). 
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Figure 4.12: Metropolis acceptance rates for specification (5). 
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Figure 4.13: Sample CME Margin Requirement Report (Source: CME Group.) 
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Figure 4.14: Sample CFTC Commitments of Traders Report (Source: CFTC) 
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Chapter 5 

Impact of Macroeconomic Surprises on 

Carry Trade Activity 

5.1 Introduction 

One of the consequences of the zero-interest rate policy in Japan was the emer­

gence of massive yen currency carry trade activity where investors borrowed in yen 

(funding currency) and bought higher-yield assets in other currencies (target or in­

vestment currency). Specifically, carry trade is a foreign exchange arbitrage strategy 

in which an investor borrows in a low interest rate currency and takes a long position 

in a higher interest rate currency betting that the exchange rate will not change so 

as to offset the profits made on the yield differential. For example, an investor can 

fund higher yielding deposits in the U.S. by borrowing from commercial banks in 

Japan at low interest. This strategy will necessitate a foreign exchange transaction 
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to sell yen for U.S. dollars in order to convert yen liabilities into dollar assets. In 

addition to issuing liabilities in low-interest currencies, carry trade can be conducted 

using currency forwards and futures on the margin (Gagnon and Chaboud (2007)). 

For example, a hedge fund could enter a forward contract to sell yen for dollar at 

some future date. Such carry trade strategies generated persistent excess returns 

(e.g. Burnside et al. (2007); Darvas (2009); Hochradl and Wagner (2010)), but also 

exposed carry traders to substantial currency risk and large losses if the yen were 

to appreciate substantially (Gyntelberg and Remolona (2007)). 

Figure 5.1 [about here] 

Figure 5.1 shows the U.S.-Japan interest differential and the JPY/USD 

exchange rate during 2004-06 when the yen carry trade was at its height. The 

prolonged low interest policy and weak economy in Japan, during which short-term 

money market rates were continuously near zero, combined with a strong economy 

and rising interest rates in the U.S., led to a rising, large and persistent interest 

differential. The figure also shows that the JPY/USD depreciated on average over 

this period, but that trend depreciation was interrupted by several episodes of sharp 

appreciation and considerable volatility. The violation of uncovered interest parity 

(UIP)1 2 allowed profit opportunities (ex post) for carry traders, but the riskiness 

of this strategy was also exposed during the bouts of large yen appreciation. 

1An appreciation of the high yield currency is an example of the forward premium puzzle and 
the violation of the uncovered interest parity (UIP) well documented by Hansen and Hansen and 
Hodrick (1980) and Engel (1996) 

2Ichme and Koyama (2008) estimate the UIP regression coefficient as low as -2 79 for the yen 
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One way to hedge against the risk of substantial yen appreciation is to 

enter into a risk reversal contract. A risk reversal contract is the simultaneous 

purchase of a deep out-of-money (OTM) call option and the sale of a deep OTM 

put option3. The holder of the risk reversal is hedging against sharp yen appreciation 

and accepting (unlikely) downside risk of sharp yen depreciation, taking on a one­

sided bet. The payoff diagram for holding a risk reversal contract is shown in Figure 

5.2. If yen (funding currency) appreciates sharply, the payoff is positive for the risk 

reversal. The opposite is true for sharp yen depreciation. Carry traders would lose 

on this risk reversal contract if the yen depreciates sharply, but this loss is more 

than offset by gains from holding an open yen carry-trade position. As such, the 

value of risk reversals are frequently treated as a proxy of expectations about the 

risk of very large changes in exchange rates4. During the "carry trade" period in 

Japan, when financial institutions were borrowing heavily in yen and investing in 

assets denominated in U.S. dollar and other currencies, the value of the risk reversal 

was always negative. This indicates a market hedge against sharp appreciation of 

the JPY/USD exchange rate. 

Figure 5.2 [about here] 

A risk reversal is a directional bet on (or hedge against) a large price movement constructed 
by a simultaneous purchase of out-of-money call and sale of out-of-money put option (usually 25 
or 10 delta) of the same maturity. The value itself is the implied volatility for the call minus the 
implied volatility of the put. 

4Brunnermeier (2009) interpret such persistent UIP violations as a compensation to carry traders 
for the downside risk of sharp funding currency appreciation. 
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Two studies of which we are aware have investigated the empirical links be­

tween risk reversals5 and official foreign exchange market intervention, using macroe-

conomic news in one case as control variables. Galati et al. (2005) estimate the effect 

of Japanese foreign exchange market intervention on the value of JPY/USD risk re­

versals along with other measures of dispersion in exchange rate expectations6. They 

consider daily data over January 1996 - November 2005 and find weak evidence that 

intervention operations impacts risk reversals. Disyatat and Galati (2007) study the 

impact of official intervention on the value of risk reversals in the Czech Koruna -

Euro, using daily data over September 2001 to September 2002. They also find that 

intervention has a limited impact on risk reversals, but that macroeconomic news is 

not significant. (They consider several measures of price, output and unemployment 

surprises for the Czech Republic and Germany). 

This paper similarly investigates market perceptions of the risk of large 

exchange rate movements by using information gleaned from risk reversal contracts 

and macroeconomic news surprises7 but departs from previous work in several im­

portant ways. Firstly, we focus on the height of the carry trade period in Japan 

(March 2004 through December 2006), where the sample is delimited at the begin-

5Several related studies including Beber and Brandt (2006), Aijo (2008), and Chen and Gau 
(2010) investigate the impact of macroeconomic surprises on options implied higher moments, 
including option implied skewness, while Lahaye et al. (2010) study the effects macro announcements 
on jump components in realized volatility. 

6 Galati et al. (2005) consider the effect of intervention and macroeconomic news on several 
measures of expectations regarding exchange rate movements, one of which (skewness) is derived 
from the value of risk reversals. 

7Evans and Lyons (2008) investigate the impact of macro news on order flow, while Hashimoto 
and Ito (2009) and Fatum et al. (2010) investigate high frequency responses to macro surprises in 
JPY/USD exchange rate. 

157 



www.manaraa.com

ning by the cessation of the Bank of Japan large-scale intervention operations and 

ends before the financial crisis emerged. Our view is that concerns about sharp 

yen appreciation were particularly evident during the period of heavy carry trade 

activity and are more likely to show up in the price of risk. Secondly, we focus 

on "big" news surprises (greater than one standard deviation movements) that are 

more likely to convey information about the risk of large changes in the exchange 

rate. Thirdly, we consider a broader set of news than previous work - thirty three 

sources (18 U.S. series and 15 Japan series) - and the only study that investigates 

the direct impact of news other than intervention for the value of JPY/USD risk 

reversals. Fourthly, we consider the indirect effect of news through the value of risk 

reversals on the yen carry trade, using non-commercial open interest positions in 

future markets as a proxy for carry trade activity. 

Overall, we find that macroeconomic news are an important determinant of 

risk reversals during periods of heavy carry trade volume. Estimates using predicted 

values based regression coefficients show that the cumulative impact of macroeco­

nomic surprises can account for more than a third of the total change in risk reversals 

during particularly dramatic episodes of changing risk perceptions in the JPY/USD 

market. Moreover, there is a close link between risk reversals and NCMS positions 

(a proxy for carry trade activity), and this link is borne out in Granger causality 

tests. Using this metric, we are able to calculate the effect of macroeconomic news 

on carry trade activity, with risk reversals (the cost of hedging) as the transmission 

mechanism. Depending on the subsample and calculation method macroeconomic 
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news surprises can translate into more than one third of the total adjustment in yen 

speculative positions. 

The paper is organized as follows. Section 5.2 describes the data and 

institutional features of the carry trade and market for risk reversals. Section 5.3 

presents the main empirical analysis and results. This section establishes a link 

between macroeconomic surprises and the value of risk reversals which is robust to 

a number of empirical model specifications. Unlike several previous studies that do 

not find a significant impact of macro surprises on risk reversals, we consider a larger 

sample of news types and, given that risk reversals price the probability of extreme 

exchange rate fluctuations, we identify large surprises. Section 5.4 investigates the 

link between risk reversals and carry-trade activity where, as a proxy for the latter, 

we use open interest non-commercial short futures positions (NCMS) in yen on the 

Chicago Mercantile Exchange (NCMS increased from 40,000 to over 160,000 during 

our sample period). By examining the correlations and through Granger-causality 

tests we establish a robust link between risk reversals and net NCMS showing that 

the short positions in yen decline (rise) following an increase (decrease) in the cost 

of insurance against a substantial yen appreciation. Section 5.5 concludes. 
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5.2 Data and Risk Reversals 

5.2.1 Institutional Features 

A risk reversal is a directional bet (or hedge) against large price swings. It is a con­

tract long one unit out-of-the-money (OTM) (typically 25-delta8) FX call option 

and short one unit OTM FX put option. In other words it is the cost of buying in­

surance against large foreign currency appreciation, financed by providing insurance 

against large foreign currency depreciation. Figure 5.2, noted in the introduction, 

shows the payoff diagram for a risk reversal. The vertical distance between the 

zero-line and the parallel payoff segment represents the net option premium of the 

risk reversal (insurance premium), i.e. its market price. 

More formally, the value of a risk reversal is equal to the implied volatility 

of an out-of-money call minus the implied volatility of an out-of-money put of the 

same moneyness and maturity. Garman and Kohlhagen (1983) applied the original 

Black and Scholes (1973) framework to foreign exchange options. We following 

Galati, Higgins. Humpage and Melick (2007) with the following representation of a 

price of a European foreign exchange call option: 

C(X,a) = —}-— (F • *(di(X,a)) - X • <&(d2(JX») (5.1) 

8 The delta of an FX option measures its sensitivity to the spot exchange rate The strike price 
of a 25-delta option is far enough from the spot price such that the option premium exhibits only 
a 0 25 correlation with changes in the strike price 
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where. 

^ ^ H S M ; ! ® : . ^ ^ ^ (8.2) 

F = e C - ' ^ S (5.3) 

S represent the spot exchange rate, i and i* are domestic and foreign inter­

est rates, X is the strike price at maturity T, and $ is the cumulative distribution of 

a standard normal. An option's delta represent its sensitivity to the changes in the 

exercise price. Risk reversals are constructed from out-of-money options with only 

25% sensitivity to changes in the strike price. Then the call price has the following 

property: 

^ = 0 . 2 5 (5.4) 

Finally, a 25-delta risk reversal is the difference in the implied volatility of 

a 25-delta call and put option: 

RR™ = of6-afs (5.5) 

Under a symmetric risk-neutral distribution the value of risk reversal should 

be zero since both OTM call and put will have the same probability of landing at-

the-money by the expiration date. Therefore, risk reversals only take on non-zero 
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values if the risk-neutral distribution of foreign exchange returns is skewed, their 

value conveying the combined effect of expected skewness and skewness risk pre­

mium. This case is depicted by the asymmetric volatility smirk in Figure 5.3. A 

thick left tail (negative skewness) of return distribution is equivalent to a correlation 

between spot levels and implied volatilities (volatility smile). Negative values of risk 

reversals imply that out-of-money dollar puts have a higher probability of being 

exercised than out-of-money dollar calls indicating a market hedge against large yen 

appreciation (U.S. dollar depreciation). 

Jain and Stafford (2006) find that yen rallies, carry trade unwinding, and 

bouts of risk aversion are correlated. Hence, risk reversals likely capture risk ap­

petites of carry traders during the times of high cost of insurance against yen ap­

preciation. Whether risk reversals are forward looking is still uncertain. Jain and 

Stafford (2006) find that sharp movements in spot are usually followed by risk re­

versal overvaluation as risk premium increases and implied skew in the following 

period is higher than the realized skewness of the return distribution. Examining 

data at daily frequency, Gagnon and Chaboud (2007) argue that during periods of 

high volatility movements in risk reversals postdate movements in exchange rates. 

At weekly frequency Carr and Wu (2007) find that JPY/USD and GBP/USD re­

turns show positive correlations with changes in risk reversals. Farhi et al. (2009) 

find that monthly changes in nominal interest rates and risk reversals exhibit strong 

contemporaneous link. The same authors also find some evidence of exchange rate 

excess returns (relative to UIP) predictability with risk reversals - very high levels 
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of risk reversals may predict currency appreciation. 

Unlike the implied skewness of at-the-money options, risk reversals provide 

potentially useful information on market pricing of extremely large events9. Farhi 

and Gabaix (2008) formulate a general equilibrium model in which they show that 

under certain conditions risk reversals depict the difference in the resilience of the 

two country's export sector productivities to aggregate shocks. 

5.2.2 Data 

We obtain daily data on 1-month and 1-year 25-delta risk reversals from Bloomberg. 

We confine our sample to the tranquil period of active carry trade after the last 

episode Japanese official interventions that ended in March 2004 and before the be­

ginnings of the emerging financial crisis in the middle of 2007. In all we end up with 

715 daily observations excluding weekends from 03/18/2004 through 12/31/2006. 

Our news data consists of a large number of time-stamped Japanese and 

U.S. macroeconomic announcements and preceding survey expectations of Fatum, 

Hutchison and Wu (2010) obtained from Bloomberg News Service10. Japanese news 

variables are chosen which are largely comparable to the U.S. news variables which 

in turn are significant in either the time-series analysis or the event study analy­

sis of Andersen et al. (2003) in their investigation of the JPY/USD exchange rate. 

9Risk reversals are also used indirectly along with other option derivatives to derive higher 
moments of risk neutral distributions. Galati et al. (2005) and Morel and Teletche (2008) study the 
relationship between official interventions in foreign exchange and market uncertainty. They use 
FX strangle and risk reversal prices to recover option implied higher moments of the risk-neutral 
FX return distribution. 

10 Japanese macro announcements are available from Bloomberg News Service as well as from the 
data banks of the Bank of Japan and the Japanese Cabinet Office. 
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Japanese news of particular interest, e.g. surprises regarding the Bank of Japan's 

TANKAN survey variables, are also considered11. In addition to the U.S. news 

variables suggested by Andersen et al. (2003), and we also consider news surprises 

regarding U.S. consumer and producer price indices. In total, the data includes 

announcements and survey expectations regarding 15 types of Japanese macro news 

and 18 types of U.S. macro news. The Japanese news variables are GDP (quar­

terly), Industrial Production, Capacity Utilization. Construction Orders. Overall 

Spending. Large Retail Sales, Trade Balance, Current Account. Retail Trade, Con­

sumer Price Index. Consumer Confidence Index, TANKAN Large Manufacturing In­

dex, TANKAN Non-Manufacturing Index. Leading Economic Index, and Monetary 

Base. The U.S. news variables are GDP. Non-Farm Payroll Employment. Industrial 

Production. Capacity Utilization, Personal Income, Consumer Credit, Consumer 

Spending, New Home Sales. Durable Goods Orders. Factory Orders, Business In­

ventories, Trade Balance, Producer Price Index. Consumer Price Index. Consumer 

Confidence Index, NAPM Index, Housing Starts, and Index of Leading Indicators. 

Consistent with the recent literature on exchange rates and news, for each 

of the macroeconomic announcements in our data we follow Fatum, Hutchison and 

Wu (2010) and the broader literature in defining news surprises as the difference 

between the macroeconomic announcement and the preceding survey expectation of 

that announcement. Subsequently, we standardize each news surprise series in order 

11 The Bank of Japan website at www boj or jp/en/theme/research/stat/ tk/mdex htm provides 
details (in English) regarding the TANKAN survey variables 
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to allow for a comparison of the relative influences of different types of news . 

In addition we construct a daily series of interest rate spread between U.S. 

and Japan as the difference between the effective federal funds rate and Japan's 

uncollateralized overnight call rate. Both are publicly available from the Federal 

Reserve Bank of New York and Bank of Japan respectively. 

We obtain the weekly futures positions data from the Commodity Fu­

tures Trading Commission (CFTC)'s Commitment of Traders (COT) report which 

is released at weekly frequency and reflects positions at the close of every business 

Tuesday. Among other variables, the OTC reports include weekly times-series of 

non-commercial trader long and short positions in yen as a percentage of total open 

interest. The CFTC defines open interest as the sum total of all futures contracts 

not yet offset by transaction, delivery or exercise. We construct the measure of 

CME net non-commercial short positions (NCMS) as a percentage of open interest 

(% O.I.) by subtracting non-commercial long from non-commercial short positions 

divided by total open interest in yen futures. 

12A standardized news surprise is given by the unexpected component of the macroeconomic 
announcement divided by the associated sample standard deviation. Let Aq<t denote the value of 
a given macroeconomic fundamental q, announced at time t. Let Eq.t refer to the median value of 
the preceding market expectations for the given fundamental at announcement time t, and let aq 

denote the sample standard deviation of all the surprise components associated with fundamental 
q. The standardized surprise of macroeconomic fundamental q announced at time t is then denned 
as Sq,t = (Aq,t - Eq,t)/crq. 
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5.3 Empirical Results: Macro News and Risk Reversals 

5.3.1 Preliminaries 

The upper panel of table 1 reports summary statistics for the 1-month and 1-year 

risk reversal series in levels and in first differences. The maximum and minimum are 

(-0.05, -2.45) and (-0.725, -2.75) for 1-month and 1-year risk reversals respectively 

indicating that both series have remained negative throughout the sample period 

consistent with market hedge against sharp yen appreciation. 

Table 5.1 [about here] 

Augmented Dickey Fuller (ADF) and Phillips-Peron unit root tests are 

shown in the lower panel of Table 5.1. These tests indicate that the log levels were 

not stationary. The null hypothesis is that there exists a unit root. The third 

column shows the unit root test on the value of a one-year 25 delta risk reversal. 

The fourth column is the corresponding tests on first differences of the values. Both 

tests fail to reject the null hypothesis of a unit root in levels, but reject the null 

in first differences by a large margin (greater than 99% level of confidence). We 

therefore proceed to estimate our empirical model with the dependent variable in 

first difference form. 
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5.3.2 Estimation Results 

Tables 5.2 and 5.3 report the results. We focus in our formal empirical analysis 

on one-year risk reversals, the longer maturity options, in order to capture the 

hedging horizons of carry traders13. Table 5.2 shows the baseline results where 

the regressions are estimated using OLS and all the macroeconomic surprises are 

included in the data set. i.e. we do not drop "small" surprises from the sample. 

Table 5.3 focuses on whether "large" changes affect the value of risk reversals, as 

would be expected since risk reversals reflect the risk of very large exchange rate 

changes. We use two criteria to select "large" surprises. The first approach is to 

consider only surprises outside "narrow bounds," i.e. exclude all surprises less than 

one standard deviation from the series specific mean value. The standard deviation 

is calculated based on all observations of the surprise variables, including days with 

no surprises. The second approach, which denote as "wide bounds," is a stricter 

criteria whereby the standard deviation is calculated on non-zero observations only, 

thus effectively making the exclusion bounds wider. The results reported in the two 

tables are similar and most of the discussion will focus on our preferred equation 

reported in Table 5.3. 

Tables 5.2 & 5.3 [about here] 

The two panels of Table 5.2 include the same news surprises, while the 

right-hand-side panel also controls for the exchange rate and the interest rate dif-
13The 1-month results are available upon request. These are generally weaker than the one-year 

results, consistent with the view that the carry trader horizon is for hedges of longer maturity. 
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ferential. The point estimates for those coefficient values which are significant are 

virtually identical in the two regressions, but controlling for exchange rates and the 

interest rate differential (right panel) give substantially higher explanatory power 

(higher R2) and a better fit of the equation based on a large (absolute value) AIC 

statistic. Two U.S. news surprises (GDP and Consumer Credit) and three Japanese 

news surprises are significant (Trade Balance. Consumer Confidence and Overall 

Household Spending), in addition to the exchange rate and interest rate differential. 

The value of including the exchange rate and interest rate differential is 

evident from the estimates in Table 5.2. so we include these variables in Table 5.3 

where we focus on "large" news surprises. The left-hand-side panel is estimated 

using OLS and the right-hand-side is estimated using an ARMA(4,4) process, for 

both "large" surprise selection criteria. In particular, closer analysis of the errors 

of the initial estimation suggested both AR(4) and MA (4) terms were appropriate-

based on a significant lag in the autocorrelation function and partial autocorrelation 

function, respectively-in the estimation. This model was chosen, relative to a simple 

OLS estimation, given the Akaike information criteria14. 

The right-hand-side panel of Table 5.3 shows that the same explanatory 

variables remain significant (U.S. GDP and Consumer Credit and Japan's Trade 

Balance, Consumer Confidence and Overall Household Spending) when only "large" 

surprises are considered. In addition. U.S. Personal Income and Japan's TANKAN 

14These results aie omitted for brevity but aie available from the authors upon request Monday 
and Friday dummies were also included in the initial estimation but were not statistically significant 
Various values of p,q in the ARMA (p,q) process were considered and the p = 4 and q = 4 were 
selected based on the AIC criteria 
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Non-Manufacturing Index are highly significant under the "wide bounds" selection 

criteria. In all, three U.S. macro news surprises and four Japanese macro news 

surprises have a statistically significant impact on the value of risk reversals during 

our sample period. 

How may the significant estimates be interpreted economically? Recall 

that the value of risk reversals remained negative throughout the carry trade sam­

ple we are investigating, indicating a market hedge against sharp yen appreciation. 

A negative (positive) coefficient value indicates higher (lower) risk of large yen appre­

ciation. (A more negative value of risk reversals indicates greater combined effect of 

expected probability of sudden yen appreciation and of the associated risk premium.) 

It is perhaps easiest to interpret coefficients in terms of an exchange rate/balance-

of-payments nexus. Higher U.S. GDP and U.S. Consumer Credit growth reduce 

the value of risk reversals, perhaps by increasing the expected size of the U.S. trade 

deficit and increasing the perceived risk of sharp yen appreciation against the dollar. 

A rise in Japan's Trade Balance also reduces the value of risk reversals and may be 

interpreted similarly in that it is an indication of a worsening U.S. external balance. 

On the other hand, the positive coefficients on the Japanese Consumer Confidence 

Index and Overall Household Spending, indicating less risk of major yen apprecia­

tion (a lower risk reversal in absolute terms), may be associated with expectations 

of a stronger Japanese economy and reduced trade surplus. U.S. Personal Income 

(positive coefficient) and TANKAN Non-Manufacturing Index (negative coefficient) 

indicate expectations of smaller U.S. and Japanese trade imbalances, respectively. 
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The standardization of the macro news surprises allows a comparison of 

the relative sizes of the coefficients. Since the expected value of each standardized 

news surprise series is zero, the coffecient obtained in the regressions with first 

differences of risk reversals as a dependent variable is an unbiased estimate of the 

impact of news surprises on the level of risk reversals as well. Consumer Credit 

has the highest coefficient in absolute value among U.S. surprises at -7.0 compared 

to -3.9 for U.S. GDP and 1.2 for Personal Income. Among the Japanese macro 

surprises Trade Balance has the highest coefficient in absolute value of-6.4 followed 

by Overall Household Spending with 4.8. 

Figure 5.4 [about here] 

We conduct a rough assessment of the cumulative impact of macroeconomic 

surprises on the value of risk reversals. In this section and the next, we focus on two 

subsamples of particularly dramatic changes in the value of risk reversals shaded 

in grey in Figure 5.4. The first period shaded in the figure, 01/07/2005 through 

03/13/2006, corresponds to a substantive reduction in the absolute value of risk 

reversals from about -2.4 to -1.0. The second period shaded in the figure, 04/12/2006 

through 05/172006, corresponds to a substantial increase in the absolute value of 

risk reversals from -1.0 to -2.0. The colored bars correspond to the impact of each 

news surprise type calculated by multiplying the regression coefficient by the value 

of the standardized surprise. The red bars, for instance, show the predicted effect 

on risk reversals of surprise U.S. GDP. 
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Table 5.4 [about here] 

Table 5.4 shows the results for the two subsamples. The first two columns 

show the cumulative impact from surprise macro announcements for the first sub-

sample, using both the "narrow band" for upper bound and the "wide band" for 

the lower bound regressions from table 3. The cumulative impact of macroeconomic 

surprises ranges from 0.32 to 0.37, accounting for 25-30% of the total change in the 

value of risk reversals over this episode. As shown in Figure 5.4, the net negative 

GDP and consumer credit news in the U.S., combined with negative trade balance 

news in Japan, led to a sharp reduction in the perceived risk of large yen appre­

ciation. Recall that the R2 in the baseline regression not controlling for exchange 

rate or interest rate was approximately 0.03 indicating that over the entire sample 

period surprise macro announcements explain approximately 3% of the variation in 

the value of risk reversals. However, focusing on a subsample of dramatic decline in 

the market value of risk we see that macro surprise announcements can account for 

over 30% of the cumulative change in the value of risk reversals. 

Figure 5.4 [about here] 

The third and fourth columns of Table 5.4 report the cumulative impact 

for the second subsample when the perceived risk of major yen appreciation jumped 

markedly. Figure 5.4 shows that the rise in absolute value of risk reversals (rise 

in perceived risk of large yen appreciation) during this episode is associated with 

several surprise announcements, namely a sharp unanticipated rise in the Japanese 
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Trade Balance and fall in Japanese Household Spending. These announcements 

accounted for approximately 10% of the total rise in absolute value of risk reversals 

during this episode. 

5.4 Link to Carry Trade Activity 

Despite the well-documented profitability of carry trade activity, aggregate flow 

volumes are difficult to measure because of diverse carry trade strategies15 and 

data limitations. Following Klitgaard and Weir (2004), Galati, Heath and McGuire 

(2007), and Brunnermeier (2009) we proxy for carry trade activity with futures 

positions of non-commercial traders on the Chicago Mercantile Exchange (CME), 

which is the largest exchange for foreign exchange futures by volume16. 

Figure 5.5 [about here] 

CFTC published Commitment of Traders (COT) report in which it classi­

fies traders as non-commercial if they have no foreign exchange exposure to hedge 

and therefore presumably trade to make profit17. These traders on average hold 

15For instance Hattori and Shin (2009) argue that carry trade can be accomplished through 
inter-office loans of multinational investment banks. 

16Galati, Heath and McGuire (2007) also examine the currency denominations of international 
assets and liabilities of commercial banks available to the Bank of International Settlements (BIS). 
Focusing on Japan, Gagnon and Chaboud (2007) trace the balance sheets of not only the banking 
sector, but also Japan's official sector and private non-banking sector. 

17A trader is classified as "commercial" or "non-commercial" by filing the Statement of Reporting 
Trader (CFTC Form 40). The CFTC staff may re-classify the trader if they possess additional 
information about the trader's use of the futures market. Furthermore, each trader receives a 
separate classification for each commodity depending on the traders' use of each market. In 2009 the 
CFTC began published the Disaggregated COT with more detailed trader classifications. Its own 
historical comparison between the two reports finds that historically the "non-commercial" category 
included professional money managers (such as hedge funds and commodity trading advisers) and 
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approximately 20 percent of total open interest positions in major currencies (Sun 

(2009)). Figure 5.5 shows the time series of non-commercial short positions and a 

simple rate of return to carry trade (following Hochradl and Wagner (2010)): 

CRt+k = (1 + iu
k
s
t)St+k/St - (1 + iJ

kft) (5.6) 

where ifc;t's denote the effective fc-period deposit rates available in Japan 

and U.S. at time t. We use 1-month deposit rates. This trend is consistent with 

the expected behavior of carry traders increasingly going short Yen and long USD 

during the period of rising ex-ante returns to carry trade. Figures 5.6 plots the 

effective carry trade return against the number of traders taking on non-commercial 

short positions. Again, consistent with non-commercial short positions serving as 

the proxy for carry trade the association between the two series is positive. 

Figures 5.7 & 5.8 [about here] 

Figure 5.7 shows the time-series of net non-commercial short positions 

(NCMS) as percentage of total open interest (% O.I) (left) against 1-month and 

1-year risk reversals (right). The series exhibit co-movement indicating that an 

increase in risk reversals towards smaller negative value (lower cost of insurance 

against Yen appreciation) is associated with an increase in speculative Yen short 

positions as proxied by CME non-commercial futures. Figure 5.8 shows the same 

other "speculative" traders while the "commercial" category has included producers, merchants, 
processors, and swap dealers who use futures markets to offset risks incurred in over-the-counter 
markets. For further details see http://www.cftc.gov/MarketReports/CommitmentsofTraders/. 
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time-series plotted against each other in first differences, once again changes in net 

speculative Yen short positions appear to evolve with changes in risk reversals. The 

pair wise correlations between the non-commercial futures and 1-month and 1-year 

risk reversals are 0.58 and 0.73. respectively. We conduct Granger-causality tests 

at weekly frequency to examine whether risk reversals lead (predict) speculative 

futures positions or vice-versa: 

2 2 2 

ANCMSt = ] T ajANCMSt-j + ^ P3ARRf_] + J^ 5jAst-j + et (5-7) 
J=i d=\ 3=\ 

2 2 2 

ARRfs = Y^ ajANCMSt-j + ^ & A i L R ^ + H 5jAst-j + <* (5-8) 
3=1 0=1 3=1 

where ANCMSt indicate change in net non-commercial short futures po­

sitions in yen as percentage of total open interest. ARR%5S indicate change in the 

value of 25-delta risk reversals, and Ast stands for change in the log of spot ex­

change rate. The Granger causality results, reported in Table 5.5, indicate that 

risk reversals lead (Granger-cause) net non-commercial yen short positions but that 

positions do not lead risk reversals. The results are robust to the inclusion of the 

lagged (log changes) exchange rate as a control. While all statistics are significant 

at the 1% level, the test-statistics are higher for 1-year risk reversals. For example, 

174 



www.manaraa.com

the cumulative effect (sum of the coefficients) of the 2-lag specification for 1-year 

risk reversals controlling for the exchange rate, is 30.38. A 100 basis point decrease 

in the absolute value of risk reversals over a two-week period is followed by a 30.4% 

increase in the net NCMS as a fraction of total open interest potions, i.e. a sharp 

reduction in the perceived risk of large yen appreciation leads to substantially more 

carry trade activity. Overall, Granger-causality results indicate that risk reversals 

convey important information on currency risk in excess of the exchange rate itself 

that is taken into account by non-commercial traders when deciding to take on an 

open interest futures position. Our findings are consistent with Brunnermeier (2009) 

who find that the value of risk reversals tends to decline together with carry trade 

activity when financial markets in the U.S. become unstable suggesting that it is 

mainly carry traders who rely on risk reversals to ensure their portfolios. 

A simple "back of the envelope" calculation measuring the impact of macroe-

conomic surprises emanating from U.S. and Japan on carry trade activity transmit­

ted during the two episodes of wide swings in risk reversals (a reduction in perceived 

risk and a rise in perceived risk) discussed in the previous section is informative. 

Figure 5.7 shows that the first episode (1/07/2005 through 03/13/2006), when per­

ceived risk declined (-2.5 to -1.0), was accompanied by a switch from a 20% net 

long position to a 40% net short open position of non-commercial traders, indicat­

ing a sharp rise in carry trade activity. The second episode (04/12/2006 through 

05/17/2006), when perceived risk increased sharply (-1.0 to -2.0), was accompanied 

by a large unwinding of short yen open positions-a switch form a 30% net short 
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position to a 10% net long position for non-commercial traders. 

Table 5.6 [about here] 

The cumulative impact of news surprises on risk reversals is multiplied by 

the sum of the coefficients on ARR^ in the Granger-causality equation (5.7) in 

Table 5.5. Table 5.6 shows the results. The first column of each panel corresponds to 

the conservative estimate obtained by multiplying the cumulative impact of macro 

surprises in excess of "wide bands" by the coefficient on ARR^ in the specification 

of (5.7) with 1-lag. The second column yields a higher estimate by multiplying the 

cumulative impact of macro surprises in excess of "narrow bands" by the sum of the 

coefficients in the 2-lag Granger causality specification in equation (5.7). 

Based on these calculations, during the first episode U.S. GDP and Con­

sumer Credit surprises had the effect of increasing net NCMS share of total open 

interest by 2.9 and 6.0 percentage points, respectively, while Japan's Trade Balance 

surprises accounted for another 2.8 percentage point rise. In total, our estimates 

suggest that macroeconomic surprises account for 38% (11.2 percentage points) of 

the rise in NCMS positions as a share of total open interest in the first episode. 

During the second episode, the fall in NCMS positions is mainly attributable to 

Japanese news. Japan's trade balance contributing about -1.7 percentage points to 

the reduction in speculative positions on CME, while Japan's Overall Household 

Spending and Japan's Consumer Confidence surprises contributed around -0.9 and 

-0.3 percentage points, respectively. Overall, macroeconomic surprises emanating 
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from U.S. and Japan accounted about 10% (-2.67 percentage points) of the fall in 

NCMS positions during this episode. 

5.5 Conclusion 

This paper investigates market perceptions of the risk of large exchange rate move­

ments by using information gleaned from risk reversal contracts and macroeconomic 

news. We focus on the height of the carry trade period in Japan (March 2004 through 

December 2006), where the sample is delimited at the beginning by the cessation of 

the Bank of Japan large-scale intervention operations and ends before the financial 

crisis emerged. Concerns about sharp yen appreciation were particularly evident 

during the period of heavy carry trade activity and are more likely to show up in 

the price of risk. 

We focus on "big" news surprises (greater than one standard deviation 

movements) that are more likely to convey information about the risk of large 

changes in the exchange rate, and consider a broad set of news - thirty three sources 

(18 U.S. series and 15 Japan series) - to investigate the direct impact of news other 

than intervention for the value of JPY/USD yen risk reversals. We also consider 

the effect of the value of risk reversals on the yen carry trade, using non-commercial 

open interest positions in futures markets as a proxy for carry trade activity. 

Overall, we find that macroeconomic news is an important determinant 

of risk reversals during periods of heavy carry trade volume. U.S. GDP, Per-
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sonal Income, and Consumer Credit and Japanese Trade Balance, TANKAN non-

manufacturing index, Consumer Confidence, and Overall Household Spending have 

a statistically significant impact on risk reversals. Estimates using predicted values 

based on regression coefficients show that the cumulative impact of macroeconomic 

surprises can account for a significant portion of the total change in risk reversals 

during episodes of changing risk perceptions in the JPY/USD market. Moreover, 

there is a close link between risk reversals and net non-commercial futures posi­

tions, and this link is borne out in Granger causality tests. Using this metric, we 

are able to calculate the effect of macroeconomic news on carry trade activity, with 

risk reversals (the cost of hedging) as the transmission mechanism. Depending on 

the subsample and calculation method, macroeconomic news surprises can translate 

into more than one third of the total adjustment in yen speculative positions. 
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Table 5.1: Summary statistics and unit root test for risk reversal series 

1-month 1-year 
(Levels) (1st Differences) (Levels) (1st Differences) 

Summary Statistics 
0.000 
0.000 
0.525 
-1.450 
0.144 
-1.693 
19.921 

-1.375 
-1.250 
-0.725 
-2.750 
0.440 
-0.595 
2.439 

0.000 
0.000 
0.250 
-0.900 
0.071 
-3.169 
41.925 

Unit Root Tests 
Aug. Dickey-Puller -4.763*** -30.984*** -2.159 -26.808*** 
Phillips-Perron -5.436*** -31.203*** -2.216 -26.815*** 
Observations 715 715 715 715 

Notes: 3/18/2004 to 12/29/2006 sample period. Unit root test 10%, 5%, and 1% 
critical values for 1-month are -2.568888, -2.865412. and -3.439371 respectively. 
Unit root test 10%. 5%. and 1% critical values for 1-year are -2.568864. -2.865366, 
and -3.439268. *. **, and *** indicate coefficients significant at 10%, 5%. and 
1% level respectively. 

Mean -0.717 
Median -0.650 
Maximum -0.050 
Minimum -2.450 
Std. Dev. 0.357 
Skewness -1.137 
Kurtosis 4.826 
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Table 5.2: Regression results of risk reversals on ALL macroeconomic announcement 
surprises 

ALL Macro Surprises 
U.S. Announcements 
GDP 
Nonfarm payroll empoloyment 
Industrial production 
Capacity utilization 
Personal income 
Consumer credit 
Consumer spending 
New home sales 
Durable goods orders 
Factory orders 
Business inventories 
Trade balance 
Producer price index 
Consumer price index 
Consumer confidence index 
NAPM index 
Housing starts 
Index of leading indicators 
Japanese Announcements 
Trade balance 
Current account 
Leading economic index 
Consumer confidence index 
TANKAN large manufacturing index 
TANKAN non-manufacturing index 
Monetary base 
Capacity utilization 
GDP (quarterly) 
Large retail sales 
Construction orders 
Industrial production 
Retail trade 
Consumer price index 
Overall household spending 
Exchange rate 
Interest rate differential 
Lag dependent variable 
R-squared 
Durbin-Watson 
Akaike info criterion 

Baseline(l) 
Coef. 

-5.517** 
4.679* 
-2.341 
-0.970 
0.766 

-4.293* 
-1.961 
0.840 
0.084 
1.353 
3.646 
0.175 
-2.826 
-1.654 
2.241 
2.181 
-0.040 
-2.248 
Coef. 

-5.553* 
-1.648 
2.220 

3.660** 
0.317 
2.639 
-2.744 
-7.503 
-2.258 
-5.532 
-0.019 
0.434 
0.386 
-3.304 

5.738** 

0.008 
0.033 
1.814 
-2.402 

S.E. 
(2.653) 
(2.468) 
(3.396) 
(3.025) 
(1.507) 
(2.550) 
(3.582) 
(2.728) 
(2.387) 
(1.650) 
(2.673) 
(3.476) 
(3.080) 
(4.822) 
(3.747) 
(1.975) 
(2.218) 
(7.118) 

S.E. 
(2.857) 
(1.782) 
(1.982) 
(1.865) 
(3.915) 
(5.011) 
(4.125) 
(13.797) 
(3.118) 
(3.595) 
(1.150) 
(2.123) 
(3.218) 
(2.229) 
(2.485) 

(0.052) 

Baseline(2) 
Coef. 

-4.259** 
0.616 
-2.679 
-1.853 
1.661 

-4.858* 
-2.553 
1.669 
1.240 

-1.471 
1.781 

-2.756 
-2.867 
-0.687 
0.317 
-0.096 
-0.703 
-0.775 
Coef. 

-5.452** 
-0.632 
0.752 

3.517* 
4.810 
-2.026 
-2.265 
-5.090 
-3.249 
-5.086 
1.326 
1.683 
0.097 
0.158 

5.558*** 
5.239*** 
-0.067* 
0.003 
0.211 
2.085 
-2.600 

S.E. 
(1.768) 
(2.314) 
(3.154) 
(3.034) 
(1.295) 
(2.619) 
(3.604) 
(2.473) 
(2.567) 
(1.607) 
(2.277) 
(2.406) 
(2.720) 
(4.003) 
(3.788) 
(2.271) 
(2.123) 
(4.959) 

S.E. 
(2.796) 
(1.760) 
(1.626) 
(1.859) 
(3.647) 
(3.856) 
(4.115) 
(9.934) 
(2.366) 
(3.388) 
(1.858) 
(2.367) 
(3.309) 
(2.951) 
(1.530) 
(1.256) 
(0.041) 
(0.044) 

Notes: 3/18/2004 12/29/2006 sample, 715 observations. Standard errors in 
parentheses; *, **, and *** indicate coefficients significant at 10%, 5%, and 1% 
level respectively. Constant and day of the week omitted because of insignificant 
coefficient. 

180 



www.manaraa.com

Table 5.3: Regression results of risk reversals on LARGE macroeconomic announce­
ment surprises 

LARGE Macro Surprises 
U S Announcements 

GDP 
Nonfarm payroll empl 
Industrial production 
Capacity utilization 
Personal income 
Consumer credit 
Consumer spending 
New home sales 
Durable goods orders 
Factory orders 
Business inventories 
Trade balance 
Producer price index 
Consumer price index 
Consumer confidence index 
NAPM index 
Housing starts 
Index of leading indicators 
Japanese Announcements 

Trade balance 
Current account 
Leading economic index 
Consumer confidence index 
TANKAN large manuf index 
TANKAN non-manuf index 
Monetary base 
Capacity utilization 
GDP (quarterly) 
Large retail sales 
Construction orders 
Industrial production 
Retail trade 
Consumer price index 
Overall household spending 

Exchange rate 
Interest rate differential 
Lag dependent vanable 

AR(4) 
MA(4) 
R-squared 
Durbm- Watson 
Akaike info criterion 

Basehne(2) 
Narrow Bounds 
Coef 

-4 219** 
0 661 
-2 744 
-1 784 
1 658 

-4 873* 
-2 522 
1 620 
1 190 

-1488 
1 786 

-2 850 
-3 049 
-0 717 
0 406 
-0 064 
-0 612 
-0 774 
Coef 

-5 526** 
-0 622 
0 758 

3 513* 
4 823 
-1 946 
-2 209 
-4 751 
-3 205 
-5 197 
1 365 
1 565 
0 064 
0 114 

5 583*** 

5 237*** 
-0 068* 
0 003 

0 212 
2 084 
-2 600 

S E 

(1 747) 
(2 317) 
(3 166) 
(3 024) 
(1 293) 
(2 635) 
(3 603) 
(2 481) 
(2 576) 
(1 612) 
(2 278) 
(2 396) 
(2 771) 
(4 008) 
(3 800) 
(2 263) 
(2 127) 
(4 958) 

S E 

(2 793) 
(1 774) 
(1 634) 
(1 855) 
(3 650) 
(3 904) 
(4 111) 
(9 922) 
(2 355) 
(3 399) 
(1 898) 
(2 379) 
(3 353) 
(2 972) 
(1 478) 

(1 256) 
(0 041) 
(0 044) 

Wide Bounds 
Coef 

-3 557* 
1663 
0 354 
-3 847 

1 082** 
-6 478* 
-2 284 
2 850 
1 221 

-1 512 
1949 

-1 254 
-0 751 
1308 
1052 

-0 456 
0 602 
-4 849 
Coef 

-6 396* 
-0 762 
0 393 
1 812 
4 440 

-3 702* 
-2 144 
-6 452 
-3 261 
-5 197 
0 736 
0 987 
1833 
2 747 

4 389*** 

5193*** 
-0 065 
0 002 

0 211 
2 078 
-2 599 

S E 

(2 043) 
(2 388) 
(5 383) 
(5 701) 
(0 421) 
(3 441) 
(4 088) 
(2 617) 
(1 842) 
(1 567) 
(2 844) 
(2 825) 
(1 060) 
(3 540) 
(4 317) 
(2 179) 
(2 020) 
(3 602) 

S E 

(3 448) 
(1 951) 
(1 753) 
(1 569) 
(4 463) 
(2 100) 
(4 271) 
(8 678) 
(2 410) 
(3 495) 
(2 112) 
(2 583) 
(3 692) 
(3 460) 
(0 928) 

(1 249) 
(0 041) 
(0 045) 

Nairow 
Coef 

-4 327** 
0 583 
-2 517 
-1 289 
1 569 

-5 518** 
-2 289 
0 666 
0 788 
-0 900 
1 613 

-1 924 
-2 227 
-0 263 
1 149 
0 163 
-0 936 
-2 628 
Coef 

-5 620** 
-0 696 
0 303 

3 538* 
3 874 
-2 765 
-1 551 
-7 923 
-2 948 
-4 110 
1 321 
0 726 
-0 102 
0 644 

5 903*** 

4 593*** 
-0 076** 

-0 658*** 
0 726*** 

0 286 
2 129 
-2 696 

ARMA(4,4) 
Bounds 

S E 

(1 841) 
(2 110) 
(3 244) 
(3 041) 
( l 168) 
(2 726) 
(3 257) 
(2 539) 
(2 485) 
( l 509) 
(2 245) 
(2 379) 
(2 164) 
(4 031) 
(3 635) 
(2 169) 
(2 262) 
(3 934) 

S E 

(2 788) 
(1 716) 
( l 723) 
( l 939) 
(3 346) 
(3 764) 
(3 607) 

(10 476) 
(2 396) 
(3 578) 
(1 698) 
(2 205) 
(3 277) 
(2 616) 
( l 948) 

(0 705) 
(0 037) 

(0 164) 
(0 148) 

Wide Bounds 
Coef 

-3 959** 
1 567 
0 897 
-3 186 

1 211*** 
-7 033** 

-2 430 
2 717 
1 511 

-0 762 
1 781 

-0 069 
-0 659 
1 826 
0 139 
-0 399 
0 244 
-5 116 
Coef 

-6 436* 
-0 868 
-0 322 
1 680 
3 640 

-3 017* 
-1 062 

-10 506 
-2 828 
-4 798 
1 007 
0 648 
1 304 
2 765 

4 794*** 

4 539*** 
-0 074** 

-0 653*** 
0 724*** 

0 286 
2 126 
-2 696 

S E 

(1 982) 
(2 214) 
(5 315) 
(5 544) 
(0 374) 
(3 567) 
(3 688) 
(2 582) 
(1 751) 
(1461) 
(2 788) 
(2 867) 
(1 010) 
(3 593) 
(4 335) 
(2 067) 
(2 179) 
(3 891) 

S E 

(3 512) 
(1 916) 
(1 762) 
(1 765) 
(3 857) 
( l 658) 
(3 776) 
(9 524) 
(2 480) 
(3 739) 
(2 126) 
(2 576) 
(3 672) 
(2 995) 
( l 573) 

(0 691) 
(0 037) 

(0 169) 
(0 152) 

Notes 3/18/2004 12/29/2006 sample, 715 observations Standard errors m parentheses, *, **, and *** 
indicate coefficients significant at 10%, 5%, and 1% level respectively Constant and day of the week 
omitted because of insignificant coefficient 
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Table 5.4: Impact of significant news surprises on the value of 1-year risk reversals 

Subsample Period: 
01/07/2005-03/13/2006 

Falling yen appreciation risk 
04/12/2006-05/17/2006 

Rising yen appreciation risk 

Surprise Announcement Narrow Bands Wide Bands Narrow Bands Wide Bands 

US GDP 
US Personal income 
US Consumer credit 
JP Trade balance 
JP Consumer confidence index 
TANKAN non-manufacturing index 
JP Overall household spending 

Total 

0.096 
0.000 
0.198 
0.091 
-0.012 
0.000 
0.000 

0.373 

0.070 
0.014 
0.143 
0.106 
0.000 
-0.016 
0.000 

0.317 

0.000 
0.000 
0.009 
-0.058 
-0.009 
0.000 
-0.029 

-0.088 

0.000 
0.000 
0.000 
-0.058 
0.000 
0.000 
-0.024 

-0.081 

% of Change in 1-Year Risk Reversal 29.84% 25.34% 9.24% 8.56% 

Note: The impact is calculated by multiplying the standardized value of the news surprise 
component relative to the Bloomberg survey of market expectation by the regression coefficient. 
The bottom row reports the cumulative impact of news surprises during each subsample period 
as a percentage of change in the value of 1-year risk reversal during the same time period. 

Table 5.5: Cumulative impact of significant news surprises on net non-commercial 
yen short positions 

F-Statistic 
Probability 
Coeff. Sum 

m:.-
! ' , l l l - ( 

\< \ 

.;>:; 
o.o".: 
f>.UU 

Baseline 
1-lag 

NCMS 
cause 
RRs 

0.483 
0.488 
0.002 

2-lag 
RRs j NCMS 

cause cause 
NCMS RRs 

1-Month Ri:-k 
8.832*** 2.213 

0.000 0.113 
21.439 0.000 

Controlling for exchange 
1-lag 

HI!.- ' NCMS 
i.i-i-i' cause 
NCMS RRs 

lii'ii 1-.IIM 

1.32H-' 0.362 
iMU!i 0.548 
7 CM 0.002 

rate 
2-lag 

UK-
C l l l f - i ' 

NCMS 

*.37 1' • 
O.dOll 
•J I.I Hi 

NCMS 
cause 
RRs 

1.409 
0.248 
0.004 

Obs. I - It -

F-Statistic <).(r_'.V-
Probability O.lMU 
Coeff. Sum II 1HI 

143 1 Il­
l-Year Risk Hi \' i-.il.-

0.521 9.611*** 2.570* 7.720'•-
0.471 0.000 0.080 (UHlii 
0.001 29.964 -0.003 1"..19"< 

U 

0.022 
0.882 
0.000 

6.!<2|-' ' 
HI'l'l 

•«I..'.,»N 

1.798 
0.169 
-0.005 

Obs. I j I 150 

Note: *, **, and *** indicate the null hypothesis of no Granger-causality is rejected at significant 
at 10%, 5%, and 1% level respectively. 
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Table 5 6- Granger causality tests between risk-reversals and net non-commercial 
short positions (% O.I.) 

Subsample Period 
01/07/2005-03/13/2006 

Falling yen appreciation risk 
04/12/2006-05/17/2006 

Rising yen appreciation risk 

Wide Bounds Narrow Bounds Wide Bounds Narrow Bounds 
1-Lag Coeff 2-Lag Coeff 1-Lag Coeff 2-Lag Coeff 

Calculation Method 

Surprise Announcement 
US GDP 
US Personal income 
US Consumer credit 
JP Trade balance 
JP Consumer confidence index 
TANKAN non-manufac index 
JP Overall house spend 
Total 

ANCMS{%0 I)ANCMS{%0 I)ANCMS(%0 I)ANCMS(%0 I) 
1 08 

0 22 

2 22 

1 64 

0 00 

-0 25 

0 00 

4 91 

2 92 

0 00 

6 01 
2 76 

-0 37 

0 00 

0 00 

1133 

0 00 

0 00 

0 00 

-0 89 

0 00 

0 00 

-0 37 

-1 26 

0 00 

0 00 

0 27 

-1 77 

-0 28 

0 00 

-0 89 

-2 67 

% of Total ANCMS(%Q I) 16 47% 38 03% 4 79% 10 14% 

Note The table shows the estimated cumulative impact over the sample period of macroeco-
nomic news surprises on net non-commercial short positions (NCMS) as a percentage of total 
open interest (% O I ) on the Chicago Mercantile Exchange (CME) The impact is calculated by 
multiplying the cumulative impact of news surprises on risk-reversals by the Granger-causality 
coefficients of risk-reversals on NCMS (% O I) 
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Figure 5.1: U.S.-Japan interest rate differential and JPY/USD exchange rate. 
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Figure 5.2: Risk reversal payoff diagram. 
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Figure 5.3: JPY/USD implied volatility smirk means yen calls/dollar puts are more 
expensive. (Source: Bloomberg, DB FX Research and authors' edits) 
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Oct 200 3 Jul 2004 Apr 2005 Jan 2006 Oct 2006 

1-Year Risk Reversal JP Overall household spending 
US GDP JP Trade balance 
US Consumer credit JP Consumer confidence index 
US Personal income TANKAN non-manufacturing index 

Figure 5.4: Impact of macroeconomic surprises (1 s d. bounds) on the risk premium 
of yen appreciation. 
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Figure 5.5: Carry trade return and total CME non-commercial short positions. 
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Figure 5.6: Carry trade return and total CME non-commercial short traders. 
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Figure 5.7: Risk reversals and CME net non-commercial Yen short futures positions. 
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Figure 5.8: Changes in risk reversals and CME net non-commercial Yen short futures 
positions. 
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Appendix A 

Chapter 2 Statistical Methodology 

The autocorrelation coefficient on institutional demand, pz, has two com­

ponents. First, the positive correlation from institutional demand this quarter and 

last quarter could result from institutions following each other in and out of the same 

securities. Second, the positive correlation could come from the institution reinforc­

ing its own portfolio over adjacent quarters. In order to distinguish between the two 

effects, we follow Sias's methodology in decomposing pt into the two components: 

_ cov(Ahk,t,\,k,t~i) /A -n 
P% — OTA \ l A , 1 J 

^{Alik,t-i) 

Ti=l Y^k=l &i,k,t\,k,t-l 

K —7 /_^ &i,k,tAl,k,t-l 
K - * = ! 

where a2(A%!k,t-i) is one because it is the covariance between standardized 
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data. Also, using dummy variable. An,i,/c,t that equals one (zero) if investor m of 

type i buys (sells) security k at time t. we can rewrite the standardized fraction of 

institutions buying a given security during current quarter as: 

A, h t = 
BuyAhk,t - Buy A i,t 

E 
a(BuyAlXt 

n=\ N, t,k,t 
BuyAij 

o(BuyAhktt) 

Substituting (A.2) into (A.3) the slope coefficient becomes: 

(A.2) 

Pi = (K - l)a(BuyAhkit)a(BuyAt;kit_i] 

v ^ A,fc,t - BuyAht \ I y ^ 

ra=l l'fc,t J \ n = l 

1 

K 

E 

(A.3) 

D%,k,t-i - BuyA^t^ 
N, i,k,t-\ 

{K - l)a(BuyAhkjt)a(BuyAlr k,t-lj 

K 

E 
fc=i 

AT,.. 

E 
7 1 = 1 

^ (A,fc,t - BuyAl}t) (A,fc,t-i - BuyAht_i) 

Nhk,tNitk,t-i 

+ (K - l)a(BuyAl^t)a(BuyAhk}t_1) 

K 

E 
fe=i 

E E 
n = l n = l , n ^ m 

(A,fe,t ~ BuyAht) (A,M-i - BuyAt^i) 
Ni,k,t^i,k,t-1 
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(A.5) 

The first term on the right hand side is the portion of correlation that 

results from investors following themselves into and out of the same real estate 

stocks and the second term is the portion of correlation that results from investors 

investors of particular type following each other in and out of the same real estate 

stocks. This second portion corresponds to herding. 
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Appendix B 

Chapter 3 Model Derivations 

B.l Proof of Proposition 4 

First, we show that S(x, a) is increasing in a for a fixed value of x. By completing 

the square on 8 we obtain: 

where. 

2.1 e H = e ^l £ (^ ) (B.l) 

Xt/trl + <V°o 
— - 1/af + l/og 

o| = {l/al + l/alr1 

^ - 2al 2a* 
02o 

2al 

(B.2) 

(B.3) 

(B.4) 
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Then we have: 

r*~ 
L*~ 

(xt-e)2 ( e -e 0 ) 2 

*°'i e 2°o d6 
( x , - 0 ) 2 (S -8 0 )2 

2-1 e
 2ao d<9 

$ ( a ; x . ) 

l - $ ( a ; x t ) **.> a ) = ^ ^ - ^ ^ ^ = , T ; : . ^ (B.5) 

where $(•; Xj) denotes the cumulative distribution function for a normal distribution 

with mean ne(xz) and variance o^. When a is increased, the numerator rises and 

the denominator falls, and thus 8{xl,a) increases. 

Next we show that A(x,a) and B(x(k),a) increase in a for a fixed x and 

k < a. We start by showing that G(x, a) is increasing in the second argument: 

dG(x,a) = d (V?{x3>x,e<a/N)\ 
da da V Pr(0 < a/N) ) [ ' 

Yx(x0 >x,6 = a/N) Pr(0 < a/N) 

Pr(0 < a/N)2 

P r ( ^ > x, e < a/N) Pr(0 = a/N) 

(B.7) 

Pr(0 < a/N)2 

Pr(fl = a/N) / P r Q j >x,e = a/N) _ PT(X3 > x, 0 < a/N) V 
Pr(# < a/N) V Pr(0 = a/N) Pr(# < a/N) J ' 

= Pr(fl < a/iV) ( P r ( ^ > * I * = a/JV) - Pr(x3 > x | ^ < a/JV)jB.9) 

> 0 (B.10) 

where "Pr" denotes likelihood functions. The last inequality holds by the prop­

erty (3.14). We show likewise that F(x,a) is decreasing in a. Since A(x,a) = 

G(x,a)/F(x, a), we obtain that A is increasing in the second argument (a). 

Finally, when a is increased by one, one trader switches sides from A to B. 

and this increases the right hand side of (3.13) because A < B. In sum. the right 
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hand side increases in a for a fixed x. Thus, if A is decreasing in x, x(a) must be 

greater than x(a — 1) in order to satisfy the equation (3.13). 

Now we show that dA/dx < 0. Define F± and Gi as the derivatives of F 

and G with respect to the first argument x. respectively. Then: 

dA{x,a) _ Fi(a;,a) (Gx{x,a) ^ 

dx F(x,a) \Fi(x,a 

G\/F\ can be rewritten as: 

Gi(x,a) _ $(a;x) Pr(6> > a) 
~F\(x~aj ~ 1 - $(a ; 5) Pr(6> < a) 

A and i? are written as: 

A(x, a) 

B{x(k),a) = 

(xt-ef (e-e0y 
f.fae ~^Te 2°l d8dx%Pr(8>a) 

(*,-*)2 -(^Ml Pr(6> < a) 
L f e 2°l e ^o d0dxz 

J- $(a ; xl)j{xl)dxl Pr(6> > a) 

/2(1 - $(a; xx))Z(xx)dxx Pr(# < a) 

K - 9 ) 2 (g-»0)2 

,M ^ - g ) 2 -(fl-flo>2 Pr(0 < a ) 

r ( ) / a e 2CT| e 2 < T° ^dx* 

fsW(l-$(a;x%))Z(xl)dxt?*(0<<x) 

Then. 

(B.12) 

(B.13) 

(B.14) 

G1/F1 I ^ W i ™ ^ - 1 (B-l5) 
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where the inequality obtains by that <£(a; X{) < $(a ; x) for any Xi > x. Noting that 

F\ < 0, we obtain from (B.ll) that dA(x,a)/dx < 0. 

B.2 Proof of Proposition B.2 

By taking logarithm of (3.13) for a and a+1 and subtracting each side, we obtain: 

0 = log<5(x(a+ l ) ,a + 1) — log 6 (x (a), a) 

+ (N - 1 -a)(logA(x(a + l ) , a + 1) - log A(x(a), a)) 

a - l 

+ 2 ( log5 (x (* ; ) ) a + l)- logS(x(A;),o)) 
fc=o 

+ logB(x(a),a + l) - log A(x(a + 1), a + 1) (B.16) 

The second argument a in 5 and -B affects the functions through a — a/N as in 

(B.5.B.14), and thus the direct effects of a' on 8 and B are of order 1/iV. Also, as 

we show shortly, the difference x(a + 1) — x(o) is of order 1/iV, and so are a's effects 

through x on 5 and 5 . Hence, the difference terms in (B.16) on log5 and logB are 

of order 1/N and tends to zero as N goes to infinity. 

The difference term in log A is broken down as: 

log A(x(a+ l),a + 1) - log A(x(a), a) 

1/N 

dlogA(x(a),a) x(a + 1) — x(a) 
J JV^oo dx 1/N 

, dlogA(x(a),a) 
+ da(l/N) ( B ' 1 7 ) 
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Thus, as N —> oo for a fixed finite a we have 

(N-l-a) [x{a + 1) - *(«)) - , l°g *<*' a ) ~ ^A(x,a) + dlogA(x(a),a)/da 

(B18) 

The right hand side is of order N° and hence it is shown that x(a + 1) — x(a) is of 

order 1/N 
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Appendix C 

Chapter 4 Model Derivations and 

Estimation Details 

C.l Proof of Proposition 4 

By taking a partial derivative with respect to m for a fixed x, we have: 

d , PrfHigh I xi = x, m) . Fix) , 1 — Fix) .„, 
^ l 0 g P r ( L 0 w | ^ = x,m) = tog G(i) " b g T^^i) ( C 

< 0 (C 
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where the inequality obtains because of F/G < f/g < (1 — F)/(l — G) since f/g is 

increasing. Thanks to the MLRP, we also have the following properties: 

JrlogM > 0 (C.3) 
ox g[x) 
d F{x) _ g{x) / / ( * ) F{x)\ 

^logcM " W) \W) " W)) ' ( } 

dx &1-G(x) 1-F{x)\g(x) l-G(x)J K } 

Then, the partial derivative of the left-hand side of (4.3) with respect to x becomes: 

— lo P r ( H i g h \xj = x,m) = d_ 1Q f(x) md_ ^ F(x) 
dx Pr(Low | Xi = x, m) dx g(x) dx G(x) 

+ ( J V - l - m ) — l o g - v ; 

as °i-G(x) 

> 0 

The partial derivative of the right-hand side of (4.3) is: 

_d_ -AsL-S = (AsL - AsH)(k - l)As' 
dm°g AsH + S -(AsH + S){AsL + S) l ' ' 

> 0 (C.8) 
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Collecting terms, we obtain: 

<*C =
 1 0 § G(g) + 1 0 § l-G(g) + -(AaH+g)(AaL+g) ^ gv 

dm i i o g f } + - i i o g S i + (iv-i-m)i"iogiE5i 
_ loo- *M 4- loo- 1 ~ F ( g ) 4- (AsL-AS H)(fc-l)As' 

1Qg G(x) "*" 1Qg l-G(x) + - (A.sH+^)(A^+^) ^ . 

ffifrffl + m(m _ m\ + {N_ 1 _m) ( «w _ ^qg> k ; 

f(x)/g{x) \F(x)) G(x)J \ ' \1-G(x) l~F(x) 

which is strictly positive by the inequalities shown above. 

C.2 Empirical Methodology 

C.2.1 J u m p component 

In the limit (as A —> 0) realized daily volatility approaches the continuously aggre­

gated sum of square returns: 

rt+l 

(A)-W a\s)ds+ J2 «2(s) (C-n) 
" t J. ^ „^*4- 1 1 

rt+l 

RVt+1 
f t<s<t+l 

and JBVJ(A) is defined as the sum of the product of adjacent absolute intraday 

returns standardized by a constant: 

l /A 

BVt(A) = iT2 Y. lr*+jA,A||rt+(j-i)A,Al (C12) 
i=2 

where [i = (2/-7r)2 is the mean of the absolute value of standard normally distributed 

random variable. Since returns from two adjacent time periods share the persistent 

volatility but not the sporadic jumps, it follows from (C.12) that bi-power variation 
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provides a reasonable proxy for the persistent component of the volatility. Barndorff-

Nielsen et al. (2006) show that: 

rt+l 
BVt+i(A) -> / a2(s)ds (C.13) 

as A -> 0. 

Since realized volatility. RVt+i(A). and bi-power volatility. BVt+i{A). can 

be directly calculated from the observed asset prices, it follows that the jump com­

ponent can be approximated as the difference of the two: 

RVt+l(A) - BVt+i(A) -> J2 K ' ( s) (C-14) 
t<s<t+l 

Because of a finite sample the estimate of the squared jump process might 

be negative so Beine et al. (2007) truncate the measurement at zero to get: 

«t+1(A) = max[RVt+l(A) - BVt+1(A),0] (C.15) 

We select only significant jumps while discounting smaller jumps as a part 

of continuous process or noise. Andersen et al. (2007) derive an asymptotically 

standard-normally distributed test statistic based on the fourth moment of the jump-

diffusion process: 

7 r M - A 1/2 [ift$+i(A) ~ BVt+1(A)]RVt+l(A)-i 
t+1{ >~ l(^ + 2^-b)max{l,TQt+1(A)BVt+1(A)-2}Y/2 l ' ' 
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where, 

l /A 

TQt+1(A) = A- 1
z , - 3 ^ | r t + , A , A | 4 / 3 | r t + ( i _ 1 ) A > A | 4 / 3 | r i + ( j _ 2 ) A i A | 4 / 3 (C .17 ) 

i=3 

v = 2 2 / 3 r (7 /6) r ( l /2 ) - x (C.18) 

so that TQt+i(A) -»• /t*
+1 a4(s)ds as A -> 0. 

Hence, choosing to estimate fewer but larger jumps amounts to choosing a 

smaller significance level a associated with critical value $ a to compute: 

«t+i,a(A) = J[Z t+i(A) > $ a ] • [RVt+1(A) - BVt+i(A)] (C.19) 

In addition to reporting all jumps, we report jumps estimated with a — 

0.05 and a = 0.01. As a final step of implementing (C.19) Andersen et al. (2007) 

tackle first order autocorrelation due to microstructure noise by dividing BVt+i(A) 

and TQt+i{A) by (1 — 2A) and (1 — 4A) respectively and adjusting the lags on 

returns. 
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C.2.2 Bayesian Markov Chain - Monte Carlo (MCMC) Estimation 

of £ and 0 

Under the assumption of exponentially dampened power-law for Kj > nmm using 

equation (4.4.6) the joint likelihood is: 

J= I 

(C.20) 

The conjugate prior families for the power exponent and exponential decay 

parameter are Gamma families1: ( ~ Gamma (a^, /3^) and <f> ~ Gamma (a^, /?</,). 

Combining prior parameter densities with equation (C.20) and assuming £ and cf> 

are orthogonal we obtain the joint posterior: 

/(C,</>|«1,«2, - , « j ) OC 

" J 

ITV 
_J=1 

CQ<-Iexp{-)9CC} exp < f
 J 1" 
- (J>j + /W> 

I J = l J . 

From (C.21) we obtain complete parameter conditionals: 

i.a-s-1 

(C.21) 

/(Cl«i, «2, -, KJ) oc Ca<_1exp { - ( /% + ^Zn(« j ) )C )> (C.22) 

and 

/(<£|KI, K2, ••, « J ) oc ^ xexj5 ^ - ( /3 0 + ^ K J ) ^ 

J = I 

(C.23) 

1See Arnold and Press (1983) for the detailed discussion on the Bayesian techniques to estimate 
parameters in the power-law distribution 
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From (C.22) and (C.23)it follows that we can apply the Gibbs step in 

the MCMC algorithm to sample the power exponent and the exponential decay 

parameter from the following distributions respectively: 

(\KI,K,2,-;KJ ~ Gamma (ac , J3Q + J2j=iln(Kj)) (C.24) 

(/)\KI, K2,.., KJ ~ Gamma (a^, fy + JR) (C.25) 

For each jump sample we have a strong prior for the parameters based on 

preliminary MLE results, therefore we chose prior parameters such that OL^/(5^ = 

(MLE and a^/fy = <PMLE-
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